An unsupervised defect detection model for a dry carbon fiber textile
Inspection of dry carbon textiles is a key step to ensure quality in aerospace manufacturing. Due to the rarity and variety of defects, collecting a comprehensive defect dataset is difficult, while collecting ‘normal’ data is comparatively easy. In this paper, we present an unsupervised defect detec...
Gespeichert in:
Veröffentlicht in: | Journal of intelligent manufacturing 2022-10, Vol.33 (7), p.2075-2092 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2092 |
---|---|
container_issue | 7 |
container_start_page | 2075 |
container_title | Journal of intelligent manufacturing |
container_volume | 33 |
creator | Szarski, Martin Chauhan, Sunita |
description | Inspection of dry carbon textiles is a key step to ensure quality in aerospace manufacturing. Due to the rarity and variety of defects, collecting a comprehensive defect dataset is difficult, while collecting ‘normal’ data is comparatively easy. In this paper, we present an unsupervised defect detection method for carbon fiber textiles that meets four key criteria for industrial applicability: using only ‘normal’ data, achieving high accuracy even on small and subtle defects, allowing visual interpretation, and achieving real-time performance. We combine a Visual Transformer Encoder and a Normalizing Flow to gather global context from input images and directly produce an image likelihood which is then used as an anomaly score. We demonstrate that when trained on only 150 normal samples, our method correctly detects 100% of anomalies with a 0% false positive rate on a industrial carbon fabric dataset with 34 real defect samples, including subtle stray fiber defects covering only 1% image area where previous methods are shown to fail. We validate the performance on the large public defect dataset
MVTec-AD Textures
, where we outperform previous work by 4–10%, proving the applicability of our method to other domains. Additionally, we propose a method to extract interpretable anomaly maps from Visual Transformer Attention Rollout and Image Likelihood Gradients that produces convincing explanations for detected anomalies. Finally, we show that the inference time for the model is acceptable at 32 ms, achieving real-time performance. |
doi_str_mv | 10.1007/s10845-022-01964-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2708085477</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2708085477</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-a82568741b8debdc433e30e58f54e7eae330c6ea6d55b2dc6ad71e62351951a33</originalsourceid><addsrcrecordid>eNp9kE1LAzEURYMoWKt_wFXAdfQlmZdklqXUDyi40XXITN7IlHamJjNi_72jFdy5uvC45z44jF1LuJUA9i5LcAUKUEqALE0h7AmbSbRKOFngKZtBiUYgSjxnFzlvAKB0Rs7YatHxscvjntJHmynySA3VwxTDFG3f8V0facubPvHAYzrwOqRqOjdtRYkP9Dm0W7pkZ03YZrr6zTl7vV-9LB_F-vnhablYi1qVehDBKTTOFrJykapYF1qTBkLXYEGWAmkNtaFgImKlYm1CtJKM0ihLlEHrObs57u5T_z5SHvymH1M3vfTKggOHhbVTSx1bdepzTtT4fWp3IR28BP-tyx91-UmX_9HlvyF9hPJU7t4o_U3_Q30Bbohs9w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2708085477</pqid></control><display><type>article</type><title>An unsupervised defect detection model for a dry carbon fiber textile</title><source>SpringerLink Journals</source><creator>Szarski, Martin ; Chauhan, Sunita</creator><creatorcontrib>Szarski, Martin ; Chauhan, Sunita</creatorcontrib><description>Inspection of dry carbon textiles is a key step to ensure quality in aerospace manufacturing. Due to the rarity and variety of defects, collecting a comprehensive defect dataset is difficult, while collecting ‘normal’ data is comparatively easy. In this paper, we present an unsupervised defect detection method for carbon fiber textiles that meets four key criteria for industrial applicability: using only ‘normal’ data, achieving high accuracy even on small and subtle defects, allowing visual interpretation, and achieving real-time performance. We combine a Visual Transformer Encoder and a Normalizing Flow to gather global context from input images and directly produce an image likelihood which is then used as an anomaly score. We demonstrate that when trained on only 150 normal samples, our method correctly detects 100% of anomalies with a 0% false positive rate on a industrial carbon fabric dataset with 34 real defect samples, including subtle stray fiber defects covering only 1% image area where previous methods are shown to fail. We validate the performance on the large public defect dataset
MVTec-AD Textures
, where we outperform previous work by 4–10%, proving the applicability of our method to other domains. Additionally, we propose a method to extract interpretable anomaly maps from Visual Transformer Attention Rollout and Image Likelihood Gradients that produces convincing explanations for detected anomalies. Finally, we show that the inference time for the model is acceptable at 32 ms, achieving real-time performance.</description><identifier>ISSN: 0956-5515</identifier><identifier>EISSN: 1572-8145</identifier><identifier>DOI: 10.1007/s10845-022-01964-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Advanced manufacturing technologies ; Aerospace industry ; Anomalies ; Business and Management ; Carbon ; Carbon fibers ; Coders ; Control ; Datasets ; Defects ; Inspection ; Machines ; Manufacturing ; Mechatronics ; Processes ; Production ; Real time ; Robotics ; Textiles ; Transformers</subject><ispartof>Journal of intelligent manufacturing, 2022-10, Vol.33 (7), p.2075-2092</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-a82568741b8debdc433e30e58f54e7eae330c6ea6d55b2dc6ad71e62351951a33</citedby><cites>FETCH-LOGICAL-c293t-a82568741b8debdc433e30e58f54e7eae330c6ea6d55b2dc6ad71e62351951a33</cites><orcidid>0000-0002-0558-3941</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10845-022-01964-7$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10845-022-01964-7$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Szarski, Martin</creatorcontrib><creatorcontrib>Chauhan, Sunita</creatorcontrib><title>An unsupervised defect detection model for a dry carbon fiber textile</title><title>Journal of intelligent manufacturing</title><addtitle>J Intell Manuf</addtitle><description>Inspection of dry carbon textiles is a key step to ensure quality in aerospace manufacturing. Due to the rarity and variety of defects, collecting a comprehensive defect dataset is difficult, while collecting ‘normal’ data is comparatively easy. In this paper, we present an unsupervised defect detection method for carbon fiber textiles that meets four key criteria for industrial applicability: using only ‘normal’ data, achieving high accuracy even on small and subtle defects, allowing visual interpretation, and achieving real-time performance. We combine a Visual Transformer Encoder and a Normalizing Flow to gather global context from input images and directly produce an image likelihood which is then used as an anomaly score. We demonstrate that when trained on only 150 normal samples, our method correctly detects 100% of anomalies with a 0% false positive rate on a industrial carbon fabric dataset with 34 real defect samples, including subtle stray fiber defects covering only 1% image area where previous methods are shown to fail. We validate the performance on the large public defect dataset
MVTec-AD Textures
, where we outperform previous work by 4–10%, proving the applicability of our method to other domains. Additionally, we propose a method to extract interpretable anomaly maps from Visual Transformer Attention Rollout and Image Likelihood Gradients that produces convincing explanations for detected anomalies. Finally, we show that the inference time for the model is acceptable at 32 ms, achieving real-time performance.</description><subject>Advanced manufacturing technologies</subject><subject>Aerospace industry</subject><subject>Anomalies</subject><subject>Business and Management</subject><subject>Carbon</subject><subject>Carbon fibers</subject><subject>Coders</subject><subject>Control</subject><subject>Datasets</subject><subject>Defects</subject><subject>Inspection</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Mechatronics</subject><subject>Processes</subject><subject>Production</subject><subject>Real time</subject><subject>Robotics</subject><subject>Textiles</subject><subject>Transformers</subject><issn>0956-5515</issn><issn>1572-8145</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kE1LAzEURYMoWKt_wFXAdfQlmZdklqXUDyi40XXITN7IlHamJjNi_72jFdy5uvC45z44jF1LuJUA9i5LcAUKUEqALE0h7AmbSbRKOFngKZtBiUYgSjxnFzlvAKB0Rs7YatHxscvjntJHmynySA3VwxTDFG3f8V0facubPvHAYzrwOqRqOjdtRYkP9Dm0W7pkZ03YZrr6zTl7vV-9LB_F-vnhablYi1qVehDBKTTOFrJykapYF1qTBkLXYEGWAmkNtaFgImKlYm1CtJKM0ihLlEHrObs57u5T_z5SHvymH1M3vfTKggOHhbVTSx1bdepzTtT4fWp3IR28BP-tyx91-UmX_9HlvyF9hPJU7t4o_U3_Q30Bbohs9w</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Szarski, Martin</creator><creator>Chauhan, Sunita</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>K9.</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M0S</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-0558-3941</orcidid></search><sort><creationdate>20221001</creationdate><title>An unsupervised defect detection model for a dry carbon fiber textile</title><author>Szarski, Martin ; Chauhan, Sunita</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-a82568741b8debdc433e30e58f54e7eae330c6ea6d55b2dc6ad71e62351951a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Advanced manufacturing technologies</topic><topic>Aerospace industry</topic><topic>Anomalies</topic><topic>Business and Management</topic><topic>Carbon</topic><topic>Carbon fibers</topic><topic>Coders</topic><topic>Control</topic><topic>Datasets</topic><topic>Defects</topic><topic>Inspection</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Mechatronics</topic><topic>Processes</topic><topic>Production</topic><topic>Real time</topic><topic>Robotics</topic><topic>Textiles</topic><topic>Transformers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Szarski, Martin</creatorcontrib><creatorcontrib>Chauhan, Sunita</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of intelligent manufacturing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Szarski, Martin</au><au>Chauhan, Sunita</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An unsupervised defect detection model for a dry carbon fiber textile</atitle><jtitle>Journal of intelligent manufacturing</jtitle><stitle>J Intell Manuf</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>33</volume><issue>7</issue><spage>2075</spage><epage>2092</epage><pages>2075-2092</pages><issn>0956-5515</issn><eissn>1572-8145</eissn><abstract>Inspection of dry carbon textiles is a key step to ensure quality in aerospace manufacturing. Due to the rarity and variety of defects, collecting a comprehensive defect dataset is difficult, while collecting ‘normal’ data is comparatively easy. In this paper, we present an unsupervised defect detection method for carbon fiber textiles that meets four key criteria for industrial applicability: using only ‘normal’ data, achieving high accuracy even on small and subtle defects, allowing visual interpretation, and achieving real-time performance. We combine a Visual Transformer Encoder and a Normalizing Flow to gather global context from input images and directly produce an image likelihood which is then used as an anomaly score. We demonstrate that when trained on only 150 normal samples, our method correctly detects 100% of anomalies with a 0% false positive rate on a industrial carbon fabric dataset with 34 real defect samples, including subtle stray fiber defects covering only 1% image area where previous methods are shown to fail. We validate the performance on the large public defect dataset
MVTec-AD Textures
, where we outperform previous work by 4–10%, proving the applicability of our method to other domains. Additionally, we propose a method to extract interpretable anomaly maps from Visual Transformer Attention Rollout and Image Likelihood Gradients that produces convincing explanations for detected anomalies. Finally, we show that the inference time for the model is acceptable at 32 ms, achieving real-time performance.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10845-022-01964-7</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-0558-3941</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0956-5515 |
ispartof | Journal of intelligent manufacturing, 2022-10, Vol.33 (7), p.2075-2092 |
issn | 0956-5515 1572-8145 |
language | eng |
recordid | cdi_proquest_journals_2708085477 |
source | SpringerLink Journals |
subjects | Advanced manufacturing technologies Aerospace industry Anomalies Business and Management Carbon Carbon fibers Coders Control Datasets Defects Inspection Machines Manufacturing Mechatronics Processes Production Real time Robotics Textiles Transformers |
title | An unsupervised defect detection model for a dry carbon fiber textile |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T05%3A01%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20unsupervised%20defect%20detection%20model%20for%20a%20dry%20carbon%20fiber%20textile&rft.jtitle=Journal%20of%20intelligent%20manufacturing&rft.au=Szarski,%20Martin&rft.date=2022-10-01&rft.volume=33&rft.issue=7&rft.spage=2075&rft.epage=2092&rft.pages=2075-2092&rft.issn=0956-5515&rft.eissn=1572-8145&rft_id=info:doi/10.1007/s10845-022-01964-7&rft_dat=%3Cproquest_cross%3E2708085477%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2708085477&rft_id=info:pmid/&rfr_iscdi=true |