Testing the reliability of monocular obstacle detection methods in a simulated 3D factory environment
Automated driving in public traffic still faces many technical and legal challenges. However, automating vehicles at low speeds in controlled industrial environments is already achievable today. A reliable obstacle detection is mandatory to prevent accidents. Recent advances in convolutional neural...
Gespeichert in:
Veröffentlicht in: | Journal of intelligent manufacturing 2022-10, Vol.33 (7), p.2157-2165 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2165 |
---|---|
container_issue | 7 |
container_start_page | 2157 |
container_title | Journal of intelligent manufacturing |
container_volume | 33 |
creator | Wenning, Marius Backhaus, Anton Akira Adlon, Tobias Burggräf, Peter |
description | Automated driving in public traffic still faces many technical and legal challenges. However, automating vehicles at low speeds in controlled industrial environments is already achievable today. A reliable obstacle detection is mandatory to prevent accidents. Recent advances in convolutional neural network-based algorithms hypothetically allow the replacement of distance measuring laser scanners with common monocameras. In this paper, we present a photorealistic 3D simulated factory environment for testing vision-based obstacle detecting algorithms preceding field tests on the safety–critical system. We further test two obstacle detection methods employing state-of-the-art semantic segmentation and depth estimation in a range of challenging test scenarios. Both models performed well under common factory settings. Some edge cases, however, lead to vehicle crashes. |
doi_str_mv | 10.1007/s10845-022-01983-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2708084982</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2708084982</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-20b044f7a4143c97222f8a8214a06b5532d17071c046de6bcbac60a3232a79dd3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wFXAdfTmNZlZSn1CwU1dh0wm06bMJDVJhf57Ryu4c3U33zmH-yF0TeGWAqi7TKEWkgBjBGhTcyJO0IxKxUhNhTxFM2hkRaSk8hxd5LwFgKau6Ay5lcvFhzUuG4eTG7xp_eDLAccejzFEux9MwrHNxdjB4c4VZ4uPAY-ubGKXsQ_Y4OzHiSuuw_wB98aWmA7YhU-fYhhdKJforDdDdle_d47enx5XixeyfHt-XdwviWUNL4RBC0L0yggquG0UY6yvTc2oMFC1UnLWUQWKWhBV56rWtsZWYDjjzKim6_gc3Rx7dyl-7KfP9DbuU5gmNVNQT46amk0UO1I2xZyT6_Uu-dGkg6agv3Xqo0496dQ_OrWYQvwYyhMc1i79Vf-T-gJ2xniD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2708084982</pqid></control><display><type>article</type><title>Testing the reliability of monocular obstacle detection methods in a simulated 3D factory environment</title><source>SpringerNature Journals</source><creator>Wenning, Marius ; Backhaus, Anton Akira ; Adlon, Tobias ; Burggräf, Peter</creator><creatorcontrib>Wenning, Marius ; Backhaus, Anton Akira ; Adlon, Tobias ; Burggräf, Peter</creatorcontrib><description>Automated driving in public traffic still faces many technical and legal challenges. However, automating vehicles at low speeds in controlled industrial environments is already achievable today. A reliable obstacle detection is mandatory to prevent accidents. Recent advances in convolutional neural network-based algorithms hypothetically allow the replacement of distance measuring laser scanners with common monocameras. In this paper, we present a photorealistic 3D simulated factory environment for testing vision-based obstacle detecting algorithms preceding field tests on the safety–critical system. We further test two obstacle detection methods employing state-of-the-art semantic segmentation and depth estimation in a range of challenging test scenarios. Both models performed well under common factory settings. Some edge cases, however, lead to vehicle crashes.</description><identifier>ISSN: 0956-5515</identifier><identifier>EISSN: 1572-8145</identifier><identifier>DOI: 10.1007/s10845-022-01983-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Accident prevention ; Algorithms ; Artificial neural networks ; Automation ; Business and Management ; Computer simulation ; Control ; Crashes ; Datasets ; Distance measurement ; Driving ability ; Field tests ; Machines ; Manufacturing ; Mechatronics ; Neural networks ; Obstacle avoidance ; Plant reliability ; Processes ; Production ; Robotics ; Semantic segmentation</subject><ispartof>Journal of intelligent manufacturing, 2022-10, Vol.33 (7), p.2157-2165</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-20b044f7a4143c97222f8a8214a06b5532d17071c046de6bcbac60a3232a79dd3</citedby><cites>FETCH-LOGICAL-c293t-20b044f7a4143c97222f8a8214a06b5532d17071c046de6bcbac60a3232a79dd3</cites><orcidid>0000-0003-0383-7634</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10845-022-01983-4$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10845-022-01983-4$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Wenning, Marius</creatorcontrib><creatorcontrib>Backhaus, Anton Akira</creatorcontrib><creatorcontrib>Adlon, Tobias</creatorcontrib><creatorcontrib>Burggräf, Peter</creatorcontrib><title>Testing the reliability of monocular obstacle detection methods in a simulated 3D factory environment</title><title>Journal of intelligent manufacturing</title><addtitle>J Intell Manuf</addtitle><description>Automated driving in public traffic still faces many technical and legal challenges. However, automating vehicles at low speeds in controlled industrial environments is already achievable today. A reliable obstacle detection is mandatory to prevent accidents. Recent advances in convolutional neural network-based algorithms hypothetically allow the replacement of distance measuring laser scanners with common monocameras. In this paper, we present a photorealistic 3D simulated factory environment for testing vision-based obstacle detecting algorithms preceding field tests on the safety–critical system. We further test two obstacle detection methods employing state-of-the-art semantic segmentation and depth estimation in a range of challenging test scenarios. Both models performed well under common factory settings. Some edge cases, however, lead to vehicle crashes.</description><subject>Accident prevention</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Automation</subject><subject>Business and Management</subject><subject>Computer simulation</subject><subject>Control</subject><subject>Crashes</subject><subject>Datasets</subject><subject>Distance measurement</subject><subject>Driving ability</subject><subject>Field tests</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Mechatronics</subject><subject>Neural networks</subject><subject>Obstacle avoidance</subject><subject>Plant reliability</subject><subject>Processes</subject><subject>Production</subject><subject>Robotics</subject><subject>Semantic segmentation</subject><issn>0956-5515</issn><issn>1572-8145</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEtLAzEUhYMoWKt_wFXAdfTmNZlZSn1CwU1dh0wm06bMJDVJhf57Ryu4c3U33zmH-yF0TeGWAqi7TKEWkgBjBGhTcyJO0IxKxUhNhTxFM2hkRaSk8hxd5LwFgKau6Ay5lcvFhzUuG4eTG7xp_eDLAccejzFEux9MwrHNxdjB4c4VZ4uPAY-ubGKXsQ_Y4OzHiSuuw_wB98aWmA7YhU-fYhhdKJforDdDdle_d47enx5XixeyfHt-XdwviWUNL4RBC0L0yggquG0UY6yvTc2oMFC1UnLWUQWKWhBV56rWtsZWYDjjzKim6_gc3Rx7dyl-7KfP9DbuU5gmNVNQT46amk0UO1I2xZyT6_Uu-dGkg6agv3Xqo0496dQ_OrWYQvwYyhMc1i79Vf-T-gJ2xniD</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Wenning, Marius</creator><creator>Backhaus, Anton Akira</creator><creator>Adlon, Tobias</creator><creator>Burggräf, Peter</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>K9.</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M0S</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-0383-7634</orcidid></search><sort><creationdate>20221001</creationdate><title>Testing the reliability of monocular obstacle detection methods in a simulated 3D factory environment</title><author>Wenning, Marius ; Backhaus, Anton Akira ; Adlon, Tobias ; Burggräf, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-20b044f7a4143c97222f8a8214a06b5532d17071c046de6bcbac60a3232a79dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accident prevention</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Automation</topic><topic>Business and Management</topic><topic>Computer simulation</topic><topic>Control</topic><topic>Crashes</topic><topic>Datasets</topic><topic>Distance measurement</topic><topic>Driving ability</topic><topic>Field tests</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Mechatronics</topic><topic>Neural networks</topic><topic>Obstacle avoidance</topic><topic>Plant reliability</topic><topic>Processes</topic><topic>Production</topic><topic>Robotics</topic><topic>Semantic segmentation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wenning, Marius</creatorcontrib><creatorcontrib>Backhaus, Anton Akira</creatorcontrib><creatorcontrib>Adlon, Tobias</creatorcontrib><creatorcontrib>Burggräf, Peter</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of intelligent manufacturing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wenning, Marius</au><au>Backhaus, Anton Akira</au><au>Adlon, Tobias</au><au>Burggräf, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Testing the reliability of monocular obstacle detection methods in a simulated 3D factory environment</atitle><jtitle>Journal of intelligent manufacturing</jtitle><stitle>J Intell Manuf</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>33</volume><issue>7</issue><spage>2157</spage><epage>2165</epage><pages>2157-2165</pages><issn>0956-5515</issn><eissn>1572-8145</eissn><abstract>Automated driving in public traffic still faces many technical and legal challenges. However, automating vehicles at low speeds in controlled industrial environments is already achievable today. A reliable obstacle detection is mandatory to prevent accidents. Recent advances in convolutional neural network-based algorithms hypothetically allow the replacement of distance measuring laser scanners with common monocameras. In this paper, we present a photorealistic 3D simulated factory environment for testing vision-based obstacle detecting algorithms preceding field tests on the safety–critical system. We further test two obstacle detection methods employing state-of-the-art semantic segmentation and depth estimation in a range of challenging test scenarios. Both models performed well under common factory settings. Some edge cases, however, lead to vehicle crashes.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10845-022-01983-4</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0383-7634</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0956-5515 |
ispartof | Journal of intelligent manufacturing, 2022-10, Vol.33 (7), p.2157-2165 |
issn | 0956-5515 1572-8145 |
language | eng |
recordid | cdi_proquest_journals_2708084982 |
source | SpringerNature Journals |
subjects | Accident prevention Algorithms Artificial neural networks Automation Business and Management Computer simulation Control Crashes Datasets Distance measurement Driving ability Field tests Machines Manufacturing Mechatronics Neural networks Obstacle avoidance Plant reliability Processes Production Robotics Semantic segmentation |
title | Testing the reliability of monocular obstacle detection methods in a simulated 3D factory environment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T14%3A43%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Testing%20the%20reliability%20of%20monocular%20obstacle%20detection%20methods%20in%20a%20simulated%203D%20factory%20environment&rft.jtitle=Journal%20of%20intelligent%20manufacturing&rft.au=Wenning,%20Marius&rft.date=2022-10-01&rft.volume=33&rft.issue=7&rft.spage=2157&rft.epage=2165&rft.pages=2157-2165&rft.issn=0956-5515&rft.eissn=1572-8145&rft_id=info:doi/10.1007/s10845-022-01983-4&rft_dat=%3Cproquest_cross%3E2708084982%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2708084982&rft_id=info:pmid/&rfr_iscdi=true |