Testing the reliability of monocular obstacle detection methods in a simulated 3D factory environment

Automated driving in public traffic still faces many technical and legal challenges. However, automating vehicles at low speeds in controlled industrial environments is already achievable today. A reliable obstacle detection is mandatory to prevent accidents. Recent advances in convolutional neural...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of intelligent manufacturing 2022-10, Vol.33 (7), p.2157-2165
Hauptverfasser: Wenning, Marius, Backhaus, Anton Akira, Adlon, Tobias, Burggräf, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2165
container_issue 7
container_start_page 2157
container_title Journal of intelligent manufacturing
container_volume 33
creator Wenning, Marius
Backhaus, Anton Akira
Adlon, Tobias
Burggräf, Peter
description Automated driving in public traffic still faces many technical and legal challenges. However, automating vehicles at low speeds in controlled industrial environments is already achievable today. A reliable obstacle detection is mandatory to prevent accidents. Recent advances in convolutional neural network-based algorithms hypothetically allow the replacement of distance measuring laser scanners with common monocameras. In this paper, we present a photorealistic 3D simulated factory environment for testing vision-based obstacle detecting algorithms preceding field tests on the safety–critical system. We further test two obstacle detection methods employing state-of-the-art semantic segmentation and depth estimation in a range of challenging test scenarios. Both models performed well under common factory settings. Some edge cases, however, lead to vehicle crashes.
doi_str_mv 10.1007/s10845-022-01983-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2708084982</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2708084982</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-20b044f7a4143c97222f8a8214a06b5532d17071c046de6bcbac60a3232a79dd3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wFXAdfTmNZlZSn1CwU1dh0wm06bMJDVJhf57Ryu4c3U33zmH-yF0TeGWAqi7TKEWkgBjBGhTcyJO0IxKxUhNhTxFM2hkRaSk8hxd5LwFgKau6Ay5lcvFhzUuG4eTG7xp_eDLAccejzFEux9MwrHNxdjB4c4VZ4uPAY-ubGKXsQ_Y4OzHiSuuw_wB98aWmA7YhU-fYhhdKJforDdDdle_d47enx5XixeyfHt-XdwviWUNL4RBC0L0yggquG0UY6yvTc2oMFC1UnLWUQWKWhBV56rWtsZWYDjjzKim6_gc3Rx7dyl-7KfP9DbuU5gmNVNQT46amk0UO1I2xZyT6_Uu-dGkg6agv3Xqo0496dQ_OrWYQvwYyhMc1i79Vf-T-gJ2xniD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2708084982</pqid></control><display><type>article</type><title>Testing the reliability of monocular obstacle detection methods in a simulated 3D factory environment</title><source>SpringerNature Journals</source><creator>Wenning, Marius ; Backhaus, Anton Akira ; Adlon, Tobias ; Burggräf, Peter</creator><creatorcontrib>Wenning, Marius ; Backhaus, Anton Akira ; Adlon, Tobias ; Burggräf, Peter</creatorcontrib><description>Automated driving in public traffic still faces many technical and legal challenges. However, automating vehicles at low speeds in controlled industrial environments is already achievable today. A reliable obstacle detection is mandatory to prevent accidents. Recent advances in convolutional neural network-based algorithms hypothetically allow the replacement of distance measuring laser scanners with common monocameras. In this paper, we present a photorealistic 3D simulated factory environment for testing vision-based obstacle detecting algorithms preceding field tests on the safety–critical system. We further test two obstacle detection methods employing state-of-the-art semantic segmentation and depth estimation in a range of challenging test scenarios. Both models performed well under common factory settings. Some edge cases, however, lead to vehicle crashes.</description><identifier>ISSN: 0956-5515</identifier><identifier>EISSN: 1572-8145</identifier><identifier>DOI: 10.1007/s10845-022-01983-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Accident prevention ; Algorithms ; Artificial neural networks ; Automation ; Business and Management ; Computer simulation ; Control ; Crashes ; Datasets ; Distance measurement ; Driving ability ; Field tests ; Machines ; Manufacturing ; Mechatronics ; Neural networks ; Obstacle avoidance ; Plant reliability ; Processes ; Production ; Robotics ; Semantic segmentation</subject><ispartof>Journal of intelligent manufacturing, 2022-10, Vol.33 (7), p.2157-2165</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-20b044f7a4143c97222f8a8214a06b5532d17071c046de6bcbac60a3232a79dd3</citedby><cites>FETCH-LOGICAL-c293t-20b044f7a4143c97222f8a8214a06b5532d17071c046de6bcbac60a3232a79dd3</cites><orcidid>0000-0003-0383-7634</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10845-022-01983-4$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10845-022-01983-4$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Wenning, Marius</creatorcontrib><creatorcontrib>Backhaus, Anton Akira</creatorcontrib><creatorcontrib>Adlon, Tobias</creatorcontrib><creatorcontrib>Burggräf, Peter</creatorcontrib><title>Testing the reliability of monocular obstacle detection methods in a simulated 3D factory environment</title><title>Journal of intelligent manufacturing</title><addtitle>J Intell Manuf</addtitle><description>Automated driving in public traffic still faces many technical and legal challenges. However, automating vehicles at low speeds in controlled industrial environments is already achievable today. A reliable obstacle detection is mandatory to prevent accidents. Recent advances in convolutional neural network-based algorithms hypothetically allow the replacement of distance measuring laser scanners with common monocameras. In this paper, we present a photorealistic 3D simulated factory environment for testing vision-based obstacle detecting algorithms preceding field tests on the safety–critical system. We further test two obstacle detection methods employing state-of-the-art semantic segmentation and depth estimation in a range of challenging test scenarios. Both models performed well under common factory settings. Some edge cases, however, lead to vehicle crashes.</description><subject>Accident prevention</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Automation</subject><subject>Business and Management</subject><subject>Computer simulation</subject><subject>Control</subject><subject>Crashes</subject><subject>Datasets</subject><subject>Distance measurement</subject><subject>Driving ability</subject><subject>Field tests</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Mechatronics</subject><subject>Neural networks</subject><subject>Obstacle avoidance</subject><subject>Plant reliability</subject><subject>Processes</subject><subject>Production</subject><subject>Robotics</subject><subject>Semantic segmentation</subject><issn>0956-5515</issn><issn>1572-8145</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEtLAzEUhYMoWKt_wFXAdfTmNZlZSn1CwU1dh0wm06bMJDVJhf57Ryu4c3U33zmH-yF0TeGWAqi7TKEWkgBjBGhTcyJO0IxKxUhNhTxFM2hkRaSk8hxd5LwFgKau6Ay5lcvFhzUuG4eTG7xp_eDLAccejzFEux9MwrHNxdjB4c4VZ4uPAY-ubGKXsQ_Y4OzHiSuuw_wB98aWmA7YhU-fYhhdKJforDdDdle_d47enx5XixeyfHt-XdwviWUNL4RBC0L0yggquG0UY6yvTc2oMFC1UnLWUQWKWhBV56rWtsZWYDjjzKim6_gc3Rx7dyl-7KfP9DbuU5gmNVNQT46amk0UO1I2xZyT6_Uu-dGkg6agv3Xqo0496dQ_OrWYQvwYyhMc1i79Vf-T-gJ2xniD</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Wenning, Marius</creator><creator>Backhaus, Anton Akira</creator><creator>Adlon, Tobias</creator><creator>Burggräf, Peter</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>K9.</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M0S</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-0383-7634</orcidid></search><sort><creationdate>20221001</creationdate><title>Testing the reliability of monocular obstacle detection methods in a simulated 3D factory environment</title><author>Wenning, Marius ; Backhaus, Anton Akira ; Adlon, Tobias ; Burggräf, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-20b044f7a4143c97222f8a8214a06b5532d17071c046de6bcbac60a3232a79dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accident prevention</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Automation</topic><topic>Business and Management</topic><topic>Computer simulation</topic><topic>Control</topic><topic>Crashes</topic><topic>Datasets</topic><topic>Distance measurement</topic><topic>Driving ability</topic><topic>Field tests</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Mechatronics</topic><topic>Neural networks</topic><topic>Obstacle avoidance</topic><topic>Plant reliability</topic><topic>Processes</topic><topic>Production</topic><topic>Robotics</topic><topic>Semantic segmentation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wenning, Marius</creatorcontrib><creatorcontrib>Backhaus, Anton Akira</creatorcontrib><creatorcontrib>Adlon, Tobias</creatorcontrib><creatorcontrib>Burggräf, Peter</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of intelligent manufacturing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wenning, Marius</au><au>Backhaus, Anton Akira</au><au>Adlon, Tobias</au><au>Burggräf, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Testing the reliability of monocular obstacle detection methods in a simulated 3D factory environment</atitle><jtitle>Journal of intelligent manufacturing</jtitle><stitle>J Intell Manuf</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>33</volume><issue>7</issue><spage>2157</spage><epage>2165</epage><pages>2157-2165</pages><issn>0956-5515</issn><eissn>1572-8145</eissn><abstract>Automated driving in public traffic still faces many technical and legal challenges. However, automating vehicles at low speeds in controlled industrial environments is already achievable today. A reliable obstacle detection is mandatory to prevent accidents. Recent advances in convolutional neural network-based algorithms hypothetically allow the replacement of distance measuring laser scanners with common monocameras. In this paper, we present a photorealistic 3D simulated factory environment for testing vision-based obstacle detecting algorithms preceding field tests on the safety–critical system. We further test two obstacle detection methods employing state-of-the-art semantic segmentation and depth estimation in a range of challenging test scenarios. Both models performed well under common factory settings. Some edge cases, however, lead to vehicle crashes.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10845-022-01983-4</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0383-7634</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0956-5515
ispartof Journal of intelligent manufacturing, 2022-10, Vol.33 (7), p.2157-2165
issn 0956-5515
1572-8145
language eng
recordid cdi_proquest_journals_2708084982
source SpringerNature Journals
subjects Accident prevention
Algorithms
Artificial neural networks
Automation
Business and Management
Computer simulation
Control
Crashes
Datasets
Distance measurement
Driving ability
Field tests
Machines
Manufacturing
Mechatronics
Neural networks
Obstacle avoidance
Plant reliability
Processes
Production
Robotics
Semantic segmentation
title Testing the reliability of monocular obstacle detection methods in a simulated 3D factory environment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T14%3A43%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Testing%20the%20reliability%20of%20monocular%20obstacle%20detection%20methods%20in%20a%20simulated%203D%20factory%20environment&rft.jtitle=Journal%20of%20intelligent%20manufacturing&rft.au=Wenning,%20Marius&rft.date=2022-10-01&rft.volume=33&rft.issue=7&rft.spage=2157&rft.epage=2165&rft.pages=2157-2165&rft.issn=0956-5515&rft.eissn=1572-8145&rft_id=info:doi/10.1007/s10845-022-01983-4&rft_dat=%3Cproquest_cross%3E2708084982%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2708084982&rft_id=info:pmid/&rfr_iscdi=true