Net Carbon Consumption in Aluminum Electrolysis: Impact of Anode Properties and Reduction Cell-Operation Variables

In the Hall–Héroult aluminum production process, the amount of carbon consumed per ton of aluminum produced is an important metric. Deviations from ideal conditions in the reduction cells contribute to the discrepancy between the theoretical carbon consumption and the actual Net Carbon Consumption (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of sustainable metallurgy 2022-09, Vol.8 (3), p.1167-1179
Hauptverfasser: Manolescu, Petre, Duchesne, Carl, Lauzon-Gauthier, Julien, Saevarsdottir, Gudrun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1179
container_issue 3
container_start_page 1167
container_title Journal of sustainable metallurgy
container_volume 8
creator Manolescu, Petre
Duchesne, Carl
Lauzon-Gauthier, Julien
Saevarsdottir, Gudrun
description In the Hall–Héroult aluminum production process, the amount of carbon consumed per ton of aluminum produced is an important metric. Deviations from ideal conditions in the reduction cells contribute to the discrepancy between the theoretical carbon consumption and the actual Net Carbon Consumption (NCC). Previous work from the authors, focused on predicting the net carbon consumption for individual anodes using partial least squares, was based on data collected by an anode-tracking system. In this paper, the importance of each aluminum production step to the NCC is identified and a link to the green anode properties is established. The data collected were analyzed using the sequential multi-block partial least-squares algorithm. The data were split in different blocks, determined by the manufacturing process sequence. The modeling showed that the top three most important blocks were alumina feeding metrics, baked anode properties, and green anode properties. Local green anode homogeneity was defined as resistivity variability metrics, calculated from the green anode resistance measurements. This local green anode homogeneity was found to be greater for anodes with low NCC. Graphical Abstract
doi_str_mv 10.1007/s40831-022-00556-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2707899274</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2707899274</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-1e0518dfe791c6bf63ff4c9a0b8b9615b17a7266cf9a02d022043928ba89f6763</originalsourceid><addsrcrecordid>eNp9UE1LwzAYDqLg0P0BTwHP1Xy0SeNtlKmD4UTUa0jTRDrapCbtYf_euIrePL1fzwfvA8AVRjcYIX4bc1RSnCFCMoSKgmXkBCwIFiKjaX_62xN6DpYx7hFChNOcc7wA4cmMsFKh9g5W3sWpH8Y29a2Dq27qWzf1cN0ZPQbfHWIb7-CmH5Qeobdw5Xxj4HPwgwljayJUroEvppn0UaIyXZft0k0dx3cVWlV3Jl6CM6u6aJY_9QK83a9fq8dsu3vYVKttpkkuxgwbVOCysYYLrFltGbU210KhuqwFw0WNueKEMW3TjjTpe5RTQcpalcIyzugFuJ51h-A_JxNHufdTcMlSEo54KQTheUKRGaWDjzEYK4fQ9iocJEbyO145xyuTgTzGK0ki0ZkUE9h9mPAn_Q_rC1oIfZM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2707899274</pqid></control><display><type>article</type><title>Net Carbon Consumption in Aluminum Electrolysis: Impact of Anode Properties and Reduction Cell-Operation Variables</title><source>SpringerLink Journals (MCLS)</source><creator>Manolescu, Petre ; Duchesne, Carl ; Lauzon-Gauthier, Julien ; Saevarsdottir, Gudrun</creator><creatorcontrib>Manolescu, Petre ; Duchesne, Carl ; Lauzon-Gauthier, Julien ; Saevarsdottir, Gudrun</creatorcontrib><description>In the Hall–Héroult aluminum production process, the amount of carbon consumed per ton of aluminum produced is an important metric. Deviations from ideal conditions in the reduction cells contribute to the discrepancy between the theoretical carbon consumption and the actual Net Carbon Consumption (NCC). Previous work from the authors, focused on predicting the net carbon consumption for individual anodes using partial least squares, was based on data collected by an anode-tracking system. In this paper, the importance of each aluminum production step to the NCC is identified and a link to the green anode properties is established. The data collected were analyzed using the sequential multi-block partial least-squares algorithm. The data were split in different blocks, determined by the manufacturing process sequence. The modeling showed that the top three most important blocks were alumina feeding metrics, baked anode properties, and green anode properties. Local green anode homogeneity was defined as resistivity variability metrics, calculated from the green anode resistance measurements. This local green anode homogeneity was found to be greater for anodes with low NCC. Graphical Abstract</description><identifier>ISSN: 2199-3823</identifier><identifier>EISSN: 2199-3831</identifier><identifier>DOI: 10.1007/s40831-022-00556-2</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algorithms ; Aluminum ; Anodes ; Carbon ; Consumption ; Earth and Environmental Science ; Electrolysis ; Electrolytic cells ; Environment ; Homogeneity ; Least squares ; Metallic Materials ; Research Article ; Sustainable Development ; Tracking systems</subject><ispartof>Journal of sustainable metallurgy, 2022-09, Vol.8 (3), p.1167-1179</ispartof><rights>The Minerals, Metals &amp; Materials Society 2022</rights><rights>The Minerals, Metals &amp; Materials Society 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-1e0518dfe791c6bf63ff4c9a0b8b9615b17a7266cf9a02d022043928ba89f6763</citedby><cites>FETCH-LOGICAL-c249t-1e0518dfe791c6bf63ff4c9a0b8b9615b17a7266cf9a02d022043928ba89f6763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40831-022-00556-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40831-022-00556-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Manolescu, Petre</creatorcontrib><creatorcontrib>Duchesne, Carl</creatorcontrib><creatorcontrib>Lauzon-Gauthier, Julien</creatorcontrib><creatorcontrib>Saevarsdottir, Gudrun</creatorcontrib><title>Net Carbon Consumption in Aluminum Electrolysis: Impact of Anode Properties and Reduction Cell-Operation Variables</title><title>Journal of sustainable metallurgy</title><addtitle>J. Sustain. Metall</addtitle><description>In the Hall–Héroult aluminum production process, the amount of carbon consumed per ton of aluminum produced is an important metric. Deviations from ideal conditions in the reduction cells contribute to the discrepancy between the theoretical carbon consumption and the actual Net Carbon Consumption (NCC). Previous work from the authors, focused on predicting the net carbon consumption for individual anodes using partial least squares, was based on data collected by an anode-tracking system. In this paper, the importance of each aluminum production step to the NCC is identified and a link to the green anode properties is established. The data collected were analyzed using the sequential multi-block partial least-squares algorithm. The data were split in different blocks, determined by the manufacturing process sequence. The modeling showed that the top three most important blocks were alumina feeding metrics, baked anode properties, and green anode properties. Local green anode homogeneity was defined as resistivity variability metrics, calculated from the green anode resistance measurements. This local green anode homogeneity was found to be greater for anodes with low NCC. Graphical Abstract</description><subject>Algorithms</subject><subject>Aluminum</subject><subject>Anodes</subject><subject>Carbon</subject><subject>Consumption</subject><subject>Earth and Environmental Science</subject><subject>Electrolysis</subject><subject>Electrolytic cells</subject><subject>Environment</subject><subject>Homogeneity</subject><subject>Least squares</subject><subject>Metallic Materials</subject><subject>Research Article</subject><subject>Sustainable Development</subject><subject>Tracking systems</subject><issn>2199-3823</issn><issn>2199-3831</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LwzAYDqLg0P0BTwHP1Xy0SeNtlKmD4UTUa0jTRDrapCbtYf_euIrePL1fzwfvA8AVRjcYIX4bc1RSnCFCMoSKgmXkBCwIFiKjaX_62xN6DpYx7hFChNOcc7wA4cmMsFKh9g5W3sWpH8Y29a2Dq27qWzf1cN0ZPQbfHWIb7-CmH5Qeobdw5Xxj4HPwgwljayJUroEvppn0UaIyXZft0k0dx3cVWlV3Jl6CM6u6aJY_9QK83a9fq8dsu3vYVKttpkkuxgwbVOCysYYLrFltGbU210KhuqwFw0WNueKEMW3TjjTpe5RTQcpalcIyzugFuJ51h-A_JxNHufdTcMlSEo54KQTheUKRGaWDjzEYK4fQ9iocJEbyO145xyuTgTzGK0ki0ZkUE9h9mPAn_Q_rC1oIfZM</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Manolescu, Petre</creator><creator>Duchesne, Carl</creator><creator>Lauzon-Gauthier, Julien</creator><creator>Saevarsdottir, Gudrun</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220901</creationdate><title>Net Carbon Consumption in Aluminum Electrolysis: Impact of Anode Properties and Reduction Cell-Operation Variables</title><author>Manolescu, Petre ; Duchesne, Carl ; Lauzon-Gauthier, Julien ; Saevarsdottir, Gudrun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-1e0518dfe791c6bf63ff4c9a0b8b9615b17a7266cf9a02d022043928ba89f6763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Aluminum</topic><topic>Anodes</topic><topic>Carbon</topic><topic>Consumption</topic><topic>Earth and Environmental Science</topic><topic>Electrolysis</topic><topic>Electrolytic cells</topic><topic>Environment</topic><topic>Homogeneity</topic><topic>Least squares</topic><topic>Metallic Materials</topic><topic>Research Article</topic><topic>Sustainable Development</topic><topic>Tracking systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Manolescu, Petre</creatorcontrib><creatorcontrib>Duchesne, Carl</creatorcontrib><creatorcontrib>Lauzon-Gauthier, Julien</creatorcontrib><creatorcontrib>Saevarsdottir, Gudrun</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of sustainable metallurgy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Manolescu, Petre</au><au>Duchesne, Carl</au><au>Lauzon-Gauthier, Julien</au><au>Saevarsdottir, Gudrun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Net Carbon Consumption in Aluminum Electrolysis: Impact of Anode Properties and Reduction Cell-Operation Variables</atitle><jtitle>Journal of sustainable metallurgy</jtitle><stitle>J. Sustain. Metall</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>8</volume><issue>3</issue><spage>1167</spage><epage>1179</epage><pages>1167-1179</pages><issn>2199-3823</issn><eissn>2199-3831</eissn><abstract>In the Hall–Héroult aluminum production process, the amount of carbon consumed per ton of aluminum produced is an important metric. Deviations from ideal conditions in the reduction cells contribute to the discrepancy between the theoretical carbon consumption and the actual Net Carbon Consumption (NCC). Previous work from the authors, focused on predicting the net carbon consumption for individual anodes using partial least squares, was based on data collected by an anode-tracking system. In this paper, the importance of each aluminum production step to the NCC is identified and a link to the green anode properties is established. The data collected were analyzed using the sequential multi-block partial least-squares algorithm. The data were split in different blocks, determined by the manufacturing process sequence. The modeling showed that the top three most important blocks were alumina feeding metrics, baked anode properties, and green anode properties. Local green anode homogeneity was defined as resistivity variability metrics, calculated from the green anode resistance measurements. This local green anode homogeneity was found to be greater for anodes with low NCC. Graphical Abstract</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40831-022-00556-2</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2199-3823
ispartof Journal of sustainable metallurgy, 2022-09, Vol.8 (3), p.1167-1179
issn 2199-3823
2199-3831
language eng
recordid cdi_proquest_journals_2707899274
source SpringerLink Journals (MCLS)
subjects Algorithms
Aluminum
Anodes
Carbon
Consumption
Earth and Environmental Science
Electrolysis
Electrolytic cells
Environment
Homogeneity
Least squares
Metallic Materials
Research Article
Sustainable Development
Tracking systems
title Net Carbon Consumption in Aluminum Electrolysis: Impact of Anode Properties and Reduction Cell-Operation Variables
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T09%3A37%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Net%20Carbon%20Consumption%20in%20Aluminum%20Electrolysis:%20Impact%20of%20Anode%20Properties%20and%20Reduction%20Cell-Operation%20Variables&rft.jtitle=Journal%20of%20sustainable%20metallurgy&rft.au=Manolescu,%20Petre&rft.date=2022-09-01&rft.volume=8&rft.issue=3&rft.spage=1167&rft.epage=1179&rft.pages=1167-1179&rft.issn=2199-3823&rft.eissn=2199-3831&rft_id=info:doi/10.1007/s40831-022-00556-2&rft_dat=%3Cproquest_cross%3E2707899274%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2707899274&rft_id=info:pmid/&rfr_iscdi=true