Restrictions on rational surfaces lying in very general hypersurfaces

We study rational surfaces on very general Fano hypersurfaces in $\mathbb {P}^n$ , with an eye toward unirationality. We prove that given any fixed family of rational surfaces, a very general hypersurface of degree d sufficiently close to n and n sufficiently large will admit no maps from surfaces i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Forum of mathematics. Sigma 2022-01, Vol.10, Article e71
Hauptverfasser: Beheshti, Roya, Riedl, Eric
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study rational surfaces on very general Fano hypersurfaces in $\mathbb {P}^n$ , with an eye toward unirationality. We prove that given any fixed family of rational surfaces, a very general hypersurface of degree d sufficiently close to n and n sufficiently large will admit no maps from surfaces in that family. In particular, this shows that for such hypersurfaces, any rational curve in the space of rational curves must meet the boundary. We also prove that for any fixed ratio $\alpha $ , a very general hypersurface in $\mathbb {P}^n$ of degree d sufficiently close to n will admit no generically finite maps from a surface satisfying $H^2 \geq \alpha HK$ , where H is the pullback of the hyperplane class from $\mathbb {P}^n$ and K is the canonical bundle on the surface.
ISSN:2050-5094
2050-5094
DOI:10.1017/fms.2022.56