Versatile strategies to tailor the glass transition temperatures of bottlebrush polymers

The glass transition of branched polymers is determined by multiple structural parameters that dictate their inter- and intramolecular interactions, and ultimately, their molecular packing in the amorphous phase. Here we examined the impact of side-chain length, backbone length, blend composition, a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer chemistry 2022-08, Vol.13 (34), p.491-497
Hauptverfasser: Dearman, Michael, Ogbonna, Nduka D, Amofa, Chamberlain A, Peters, Andrew J, Lawrence, Jimmy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 497
container_issue 34
container_start_page 491
container_title Polymer chemistry
container_volume 13
creator Dearman, Michael
Ogbonna, Nduka D
Amofa, Chamberlain A
Peters, Andrew J
Lawrence, Jimmy
description The glass transition of branched polymers is determined by multiple structural parameters that dictate their inter- and intramolecular interactions, and ultimately, their molecular packing in the amorphous phase. Here we examined the impact of side-chain length, backbone length, blend composition, and topology on the glass transition behavior of bottlebrush polymers. Through examining precision bottlebrush polymer libraries (PBP, SC = 1.0), we find the infinite molecular weight T g is reached at a specific brush length after which the effect of the side-chain length dominates. Being a factor more dominant than the backbone, side-chain length affects the T g of bottlebrush polymers across all sizes and topology variations. To demonstrate the versatility of side chain engineering strategies, a broad range of T g and glass transition behavior was targeted through judicious choice of side chain length, blend ratios, and brush topology. PBPs yield precise T g with some values only accessible through making PBP blends at the cost of T g broadening. Ultimately, multiblock PBPs combine the best features of both approaches; the ability to target arbitrary T g while maintaining sharp glass transition. The glass transition temperature ( T g ) of bottlebrush polymers can be controlled via side-chain length, blend composition and brush topology. Elucidating interactions between these parameters and their design rules enables accurate targeting of T g at arbitrary molecular weights.
doi_str_mv 10.1039/d2py00819j
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2707820370</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2707820370</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-2aff3842f31d729ad391f9bf2d4899f0880d1e95b6300c4eb0f901a9401c3d2c3</originalsourceid><addsrcrecordid>eNpF0E1LAzEQBuAgCpbai3ch4E1YnST7kRylflPQg4qeluxu0m7ZNmsme9h_b7RS5zLD8DADLyGnDC4ZCHXV8H4EkEytD8iEFZlKlMr54X7O0mMyQ1xDLMFSLvIJ-Xg3HnVoO0MxeB3MsjVIg6NBt53zNKwMXXYa487rLbahdVsazKY3EQ8-Wmdp5ULoTOUHXNHedeMm3jwhR1Z3aGZ_fUre7m5f5w_J4vn-cX69SGouWUi4tlbIlFvBmoIr3QjFrKosb1KplAUpoWFGZVUuAOrUVGAVMK1SYLVoeC2m5Hx3t_fuazAYyrUb_Da-LHkBheQgCojqYqdq7xC9sWXv2432Y8mg_AmvvOEvn7_hPUV8tsMe6737D1d8AzGDbP8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2707820370</pqid></control><display><type>article</type><title>Versatile strategies to tailor the glass transition temperatures of bottlebrush polymers</title><source>Royal Society Of Chemistry Journals</source><creator>Dearman, Michael ; Ogbonna, Nduka D ; Amofa, Chamberlain A ; Peters, Andrew J ; Lawrence, Jimmy</creator><creatorcontrib>Dearman, Michael ; Ogbonna, Nduka D ; Amofa, Chamberlain A ; Peters, Andrew J ; Lawrence, Jimmy</creatorcontrib><description>The glass transition of branched polymers is determined by multiple structural parameters that dictate their inter- and intramolecular interactions, and ultimately, their molecular packing in the amorphous phase. Here we examined the impact of side-chain length, backbone length, blend composition, and topology on the glass transition behavior of bottlebrush polymers. Through examining precision bottlebrush polymer libraries (PBP, SC = 1.0), we find the infinite molecular weight T g is reached at a specific brush length after which the effect of the side-chain length dominates. Being a factor more dominant than the backbone, side-chain length affects the T g of bottlebrush polymers across all sizes and topology variations. To demonstrate the versatility of side chain engineering strategies, a broad range of T g and glass transition behavior was targeted through judicious choice of side chain length, blend ratios, and brush topology. PBPs yield precise T g with some values only accessible through making PBP blends at the cost of T g broadening. Ultimately, multiblock PBPs combine the best features of both approaches; the ability to target arbitrary T g while maintaining sharp glass transition. The glass transition temperature ( T g ) of bottlebrush polymers can be controlled via side-chain length, blend composition and brush topology. Elucidating interactions between these parameters and their design rules enables accurate targeting of T g at arbitrary molecular weights.</description><identifier>ISSN: 1759-9954</identifier><identifier>EISSN: 1759-9962</identifier><identifier>DOI: 10.1039/d2py00819j</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Glass transition temperature ; Polymer chemistry ; Polymers ; Topology</subject><ispartof>Polymer chemistry, 2022-08, Vol.13 (34), p.491-497</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-2aff3842f31d729ad391f9bf2d4899f0880d1e95b6300c4eb0f901a9401c3d2c3</citedby><cites>FETCH-LOGICAL-c281t-2aff3842f31d729ad391f9bf2d4899f0880d1e95b6300c4eb0f901a9401c3d2c3</cites><orcidid>0000-0001-9383-6023 ; 0000-0002-6522-6110 ; 0000-0002-4307-7783 ; 0000-0003-4455-6177 ; 0000-0001-5031-2828</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Dearman, Michael</creatorcontrib><creatorcontrib>Ogbonna, Nduka D</creatorcontrib><creatorcontrib>Amofa, Chamberlain A</creatorcontrib><creatorcontrib>Peters, Andrew J</creatorcontrib><creatorcontrib>Lawrence, Jimmy</creatorcontrib><title>Versatile strategies to tailor the glass transition temperatures of bottlebrush polymers</title><title>Polymer chemistry</title><description>The glass transition of branched polymers is determined by multiple structural parameters that dictate their inter- and intramolecular interactions, and ultimately, their molecular packing in the amorphous phase. Here we examined the impact of side-chain length, backbone length, blend composition, and topology on the glass transition behavior of bottlebrush polymers. Through examining precision bottlebrush polymer libraries (PBP, SC = 1.0), we find the infinite molecular weight T g is reached at a specific brush length after which the effect of the side-chain length dominates. Being a factor more dominant than the backbone, side-chain length affects the T g of bottlebrush polymers across all sizes and topology variations. To demonstrate the versatility of side chain engineering strategies, a broad range of T g and glass transition behavior was targeted through judicious choice of side chain length, blend ratios, and brush topology. PBPs yield precise T g with some values only accessible through making PBP blends at the cost of T g broadening. Ultimately, multiblock PBPs combine the best features of both approaches; the ability to target arbitrary T g while maintaining sharp glass transition. The glass transition temperature ( T g ) of bottlebrush polymers can be controlled via side-chain length, blend composition and brush topology. Elucidating interactions between these parameters and their design rules enables accurate targeting of T g at arbitrary molecular weights.</description><subject>Glass transition temperature</subject><subject>Polymer chemistry</subject><subject>Polymers</subject><subject>Topology</subject><issn>1759-9954</issn><issn>1759-9962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpF0E1LAzEQBuAgCpbai3ch4E1YnST7kRylflPQg4qeluxu0m7ZNmsme9h_b7RS5zLD8DADLyGnDC4ZCHXV8H4EkEytD8iEFZlKlMr54X7O0mMyQ1xDLMFSLvIJ-Xg3HnVoO0MxeB3MsjVIg6NBt53zNKwMXXYa487rLbahdVsazKY3EQ8-Wmdp5ULoTOUHXNHedeMm3jwhR1Z3aGZ_fUre7m5f5w_J4vn-cX69SGouWUi4tlbIlFvBmoIr3QjFrKosb1KplAUpoWFGZVUuAOrUVGAVMK1SYLVoeC2m5Hx3t_fuazAYyrUb_Da-LHkBheQgCojqYqdq7xC9sWXv2432Y8mg_AmvvOEvn7_hPUV8tsMe6737D1d8AzGDbP8</recordid><startdate>20220830</startdate><enddate>20220830</enddate><creator>Dearman, Michael</creator><creator>Ogbonna, Nduka D</creator><creator>Amofa, Chamberlain A</creator><creator>Peters, Andrew J</creator><creator>Lawrence, Jimmy</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-9383-6023</orcidid><orcidid>https://orcid.org/0000-0002-6522-6110</orcidid><orcidid>https://orcid.org/0000-0002-4307-7783</orcidid><orcidid>https://orcid.org/0000-0003-4455-6177</orcidid><orcidid>https://orcid.org/0000-0001-5031-2828</orcidid></search><sort><creationdate>20220830</creationdate><title>Versatile strategies to tailor the glass transition temperatures of bottlebrush polymers</title><author>Dearman, Michael ; Ogbonna, Nduka D ; Amofa, Chamberlain A ; Peters, Andrew J ; Lawrence, Jimmy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-2aff3842f31d729ad391f9bf2d4899f0880d1e95b6300c4eb0f901a9401c3d2c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Glass transition temperature</topic><topic>Polymer chemistry</topic><topic>Polymers</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dearman, Michael</creatorcontrib><creatorcontrib>Ogbonna, Nduka D</creatorcontrib><creatorcontrib>Amofa, Chamberlain A</creatorcontrib><creatorcontrib>Peters, Andrew J</creatorcontrib><creatorcontrib>Lawrence, Jimmy</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Polymer chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dearman, Michael</au><au>Ogbonna, Nduka D</au><au>Amofa, Chamberlain A</au><au>Peters, Andrew J</au><au>Lawrence, Jimmy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Versatile strategies to tailor the glass transition temperatures of bottlebrush polymers</atitle><jtitle>Polymer chemistry</jtitle><date>2022-08-30</date><risdate>2022</risdate><volume>13</volume><issue>34</issue><spage>491</spage><epage>497</epage><pages>491-497</pages><issn>1759-9954</issn><eissn>1759-9962</eissn><abstract>The glass transition of branched polymers is determined by multiple structural parameters that dictate their inter- and intramolecular interactions, and ultimately, their molecular packing in the amorphous phase. Here we examined the impact of side-chain length, backbone length, blend composition, and topology on the glass transition behavior of bottlebrush polymers. Through examining precision bottlebrush polymer libraries (PBP, SC = 1.0), we find the infinite molecular weight T g is reached at a specific brush length after which the effect of the side-chain length dominates. Being a factor more dominant than the backbone, side-chain length affects the T g of bottlebrush polymers across all sizes and topology variations. To demonstrate the versatility of side chain engineering strategies, a broad range of T g and glass transition behavior was targeted through judicious choice of side chain length, blend ratios, and brush topology. PBPs yield precise T g with some values only accessible through making PBP blends at the cost of T g broadening. Ultimately, multiblock PBPs combine the best features of both approaches; the ability to target arbitrary T g while maintaining sharp glass transition. The glass transition temperature ( T g ) of bottlebrush polymers can be controlled via side-chain length, blend composition and brush topology. Elucidating interactions between these parameters and their design rules enables accurate targeting of T g at arbitrary molecular weights.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d2py00819j</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-9383-6023</orcidid><orcidid>https://orcid.org/0000-0002-6522-6110</orcidid><orcidid>https://orcid.org/0000-0002-4307-7783</orcidid><orcidid>https://orcid.org/0000-0003-4455-6177</orcidid><orcidid>https://orcid.org/0000-0001-5031-2828</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1759-9954
ispartof Polymer chemistry, 2022-08, Vol.13 (34), p.491-497
issn 1759-9954
1759-9962
language eng
recordid cdi_proquest_journals_2707820370
source Royal Society Of Chemistry Journals
subjects Glass transition temperature
Polymer chemistry
Polymers
Topology
title Versatile strategies to tailor the glass transition temperatures of bottlebrush polymers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T01%3A13%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Versatile%20strategies%20to%20tailor%20the%20glass%20transition%20temperatures%20of%20bottlebrush%20polymers&rft.jtitle=Polymer%20chemistry&rft.au=Dearman,%20Michael&rft.date=2022-08-30&rft.volume=13&rft.issue=34&rft.spage=491&rft.epage=497&rft.pages=491-497&rft.issn=1759-9954&rft.eissn=1759-9962&rft_id=info:doi/10.1039/d2py00819j&rft_dat=%3Cproquest_cross%3E2707820370%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2707820370&rft_id=info:pmid/&rfr_iscdi=true