Boundedness of operators on the Bergman spaces associated with a class of generalized analytic functions
The purpose of the paper is to study the operators on the weighted Bergman spaces on the unit disk \({\mathbb{D}}\), denoted by \(A^{p}_{\lambda,w}({\mathbb{D}})\), that are associated with a class of generalized analytic functions, named the \(\lambda\)-analytic functions, and with a class of radia...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-09 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Li, Zhongkai Wei, Haihua |
description | The purpose of the paper is to study the operators on the weighted Bergman spaces on the unit disk \({\mathbb{D}}\), denoted by \(A^{p}_{\lambda,w}({\mathbb{D}})\), that are associated with a class of generalized analytic functions, named the \(\lambda\)-analytic functions, and with a class of radial weight functions \(w\). For \(\lambda\ge0\), a \(C^2\) function \(f\) on \({{\mathbb D}}\) is said to be \(\lambda\)-analytic if \(D_{\bar{z}}f=0\), where \(D_{\bar{z}}\) is the (complex) Dunkl operator given by \(D_{\bar{z}}f=\partial_{\bar{z}}f-\lambda(f(z)-f(\bar{z}))/(z-\bar{z})\). It is shown that, for \(2\lambda/(2\lambda+1)\le p\le1\), the boundedness of an operator from \(A^{p}_{\lambda,w}({\mathbb{D}})\) into a Banach space depends only upon the norm estimate of a single vector-valued \(\lambda\)-analytic function. As applications, we obtain a necessary and sufficient conditions of sequence multipliers on the spaces \(A^{p}_{\lambda,w}({\mathbb{D}})\) for general weights \(w\), and characterize the dual space of \(A^{p}_{\lambda,w}({\mathbb{D}})\) for the power weight \(w=(1-|z|^2)^{\alpha-1}\) with \(\alpha>0\), and also give a sufficient condition of Carleson type for boundedness of multiplication operators on \(A^{p}_{\lambda,w}({\mathbb{D}})\). |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2707727250</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2707727250</sourcerecordid><originalsourceid>FETCH-proquest_journals_27077272503</originalsourceid><addsrcrecordid>eNqNjkEKwjAQRYMgWLR3GHBdiKm1riuKB3BfhnTaptSkZlJET29AD-Dq8_nvwV-IROX5LjvulVqJlHmQUqpDqYoiT0Rfudk21FhiBteCm8hjcD4WC6EnqMh3d7TAE2piQGanDQZq4GlCDwh6xK_akY3uaN5xQ4vjKxgN7Wx1MM7yRixbHJnSX67F9nK-na7Z5N1jJg714GYfNa5VKctSxYMy_4_6AJjmSGI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2707727250</pqid></control><display><type>article</type><title>Boundedness of operators on the Bergman spaces associated with a class of generalized analytic functions</title><source>Freely Accessible Journals</source><creator>Li, Zhongkai ; Wei, Haihua</creator><creatorcontrib>Li, Zhongkai ; Wei, Haihua</creatorcontrib><description>The purpose of the paper is to study the operators on the weighted Bergman spaces on the unit disk \({\mathbb{D}}\), denoted by \(A^{p}_{\lambda,w}({\mathbb{D}})\), that are associated with a class of generalized analytic functions, named the \(\lambda\)-analytic functions, and with a class of radial weight functions \(w\). For \(\lambda\ge0\), a \(C^2\) function \(f\) on \({{\mathbb D}}\) is said to be \(\lambda\)-analytic if \(D_{\bar{z}}f=0\), where \(D_{\bar{z}}\) is the (complex) Dunkl operator given by \(D_{\bar{z}}f=\partial_{\bar{z}}f-\lambda(f(z)-f(\bar{z}))/(z-\bar{z})\). It is shown that, for \(2\lambda/(2\lambda+1)\le p\le1\), the boundedness of an operator from \(A^{p}_{\lambda,w}({\mathbb{D}})\) into a Banach space depends only upon the norm estimate of a single vector-valued \(\lambda\)-analytic function. As applications, we obtain a necessary and sufficient conditions of sequence multipliers on the spaces \(A^{p}_{\lambda,w}({\mathbb{D}})\) for general weights \(w\), and characterize the dual space of \(A^{p}_{\lambda,w}({\mathbb{D}})\) for the power weight \(w=(1-|z|^2)^{\alpha-1}\) with \(\alpha>0\), and also give a sufficient condition of Carleson type for boundedness of multiplication operators on \(A^{p}_{\lambda,w}({\mathbb{D}})\).</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Analytic functions ; Banach spaces ; Mathematical analysis ; Operators (mathematics) ; Weighting functions</subject><ispartof>arXiv.org, 2022-09</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>781,785</link.rule.ids></links><search><creatorcontrib>Li, Zhongkai</creatorcontrib><creatorcontrib>Wei, Haihua</creatorcontrib><title>Boundedness of operators on the Bergman spaces associated with a class of generalized analytic functions</title><title>arXiv.org</title><description>The purpose of the paper is to study the operators on the weighted Bergman spaces on the unit disk \({\mathbb{D}}\), denoted by \(A^{p}_{\lambda,w}({\mathbb{D}})\), that are associated with a class of generalized analytic functions, named the \(\lambda\)-analytic functions, and with a class of radial weight functions \(w\). For \(\lambda\ge0\), a \(C^2\) function \(f\) on \({{\mathbb D}}\) is said to be \(\lambda\)-analytic if \(D_{\bar{z}}f=0\), where \(D_{\bar{z}}\) is the (complex) Dunkl operator given by \(D_{\bar{z}}f=\partial_{\bar{z}}f-\lambda(f(z)-f(\bar{z}))/(z-\bar{z})\). It is shown that, for \(2\lambda/(2\lambda+1)\le p\le1\), the boundedness of an operator from \(A^{p}_{\lambda,w}({\mathbb{D}})\) into a Banach space depends only upon the norm estimate of a single vector-valued \(\lambda\)-analytic function. As applications, we obtain a necessary and sufficient conditions of sequence multipliers on the spaces \(A^{p}_{\lambda,w}({\mathbb{D}})\) for general weights \(w\), and characterize the dual space of \(A^{p}_{\lambda,w}({\mathbb{D}})\) for the power weight \(w=(1-|z|^2)^{\alpha-1}\) with \(\alpha>0\), and also give a sufficient condition of Carleson type for boundedness of multiplication operators on \(A^{p}_{\lambda,w}({\mathbb{D}})\).</description><subject>Analytic functions</subject><subject>Banach spaces</subject><subject>Mathematical analysis</subject><subject>Operators (mathematics)</subject><subject>Weighting functions</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjkEKwjAQRYMgWLR3GHBdiKm1riuKB3BfhnTaptSkZlJET29AD-Dq8_nvwV-IROX5LjvulVqJlHmQUqpDqYoiT0Rfudk21FhiBteCm8hjcD4WC6EnqMh3d7TAE2piQGanDQZq4GlCDwh6xK_akY3uaN5xQ4vjKxgN7Wx1MM7yRixbHJnSX67F9nK-na7Z5N1jJg714GYfNa5VKctSxYMy_4_6AJjmSGI</recordid><startdate>20220918</startdate><enddate>20220918</enddate><creator>Li, Zhongkai</creator><creator>Wei, Haihua</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20220918</creationdate><title>Boundedness of operators on the Bergman spaces associated with a class of generalized analytic functions</title><author>Li, Zhongkai ; Wei, Haihua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27077272503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analytic functions</topic><topic>Banach spaces</topic><topic>Mathematical analysis</topic><topic>Operators (mathematics)</topic><topic>Weighting functions</topic><toplevel>online_resources</toplevel><creatorcontrib>Li, Zhongkai</creatorcontrib><creatorcontrib>Wei, Haihua</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Zhongkai</au><au>Wei, Haihua</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Boundedness of operators on the Bergman spaces associated with a class of generalized analytic functions</atitle><jtitle>arXiv.org</jtitle><date>2022-09-18</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>The purpose of the paper is to study the operators on the weighted Bergman spaces on the unit disk \({\mathbb{D}}\), denoted by \(A^{p}_{\lambda,w}({\mathbb{D}})\), that are associated with a class of generalized analytic functions, named the \(\lambda\)-analytic functions, and with a class of radial weight functions \(w\). For \(\lambda\ge0\), a \(C^2\) function \(f\) on \({{\mathbb D}}\) is said to be \(\lambda\)-analytic if \(D_{\bar{z}}f=0\), where \(D_{\bar{z}}\) is the (complex) Dunkl operator given by \(D_{\bar{z}}f=\partial_{\bar{z}}f-\lambda(f(z)-f(\bar{z}))/(z-\bar{z})\). It is shown that, for \(2\lambda/(2\lambda+1)\le p\le1\), the boundedness of an operator from \(A^{p}_{\lambda,w}({\mathbb{D}})\) into a Banach space depends only upon the norm estimate of a single vector-valued \(\lambda\)-analytic function. As applications, we obtain a necessary and sufficient conditions of sequence multipliers on the spaces \(A^{p}_{\lambda,w}({\mathbb{D}})\) for general weights \(w\), and characterize the dual space of \(A^{p}_{\lambda,w}({\mathbb{D}})\) for the power weight \(w=(1-|z|^2)^{\alpha-1}\) with \(\alpha>0\), and also give a sufficient condition of Carleson type for boundedness of multiplication operators on \(A^{p}_{\lambda,w}({\mathbb{D}})\).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2707727250 |
source | Freely Accessible Journals |
subjects | Analytic functions Banach spaces Mathematical analysis Operators (mathematics) Weighting functions |
title | Boundedness of operators on the Bergman spaces associated with a class of generalized analytic functions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T18%3A25%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Boundedness%20of%20operators%20on%20the%20Bergman%20spaces%20associated%20with%20a%20class%20of%20generalized%20analytic%20functions&rft.jtitle=arXiv.org&rft.au=Li,%20Zhongkai&rft.date=2022-09-18&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2707727250%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2707727250&rft_id=info:pmid/&rfr_iscdi=true |