Multi-objective Hyper-parameter Optimization of Behavioral Song Embeddings
Song embeddings are a key component of most music recommendation engines. In this work, we study the hyper-parameter optimization of behavioral song embeddings based on Word2Vec on a selection of downstream tasks, namely next-song recommendation, false neighbor rejection, and artist and genre cluste...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-08 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Quadrana, Massimo Larreche-Mouly, Antoine Mauch, Matthias |
description | Song embeddings are a key component of most music recommendation engines. In this work, we study the hyper-parameter optimization of behavioral song embeddings based on Word2Vec on a selection of downstream tasks, namely next-song recommendation, false neighbor rejection, and artist and genre clustering. We present new optimization objectives and metrics to monitor the effects of hyper-parameter optimization. We show that single-objective optimization can cause side effects on the non optimized metrics and propose a simple multi-objective optimization to mitigate these effects. We find that next-song recommendation quality of Word2Vec is anti-correlated with song popularity, and we show how song embedding optimization can balance performance across different popularity levels. We then show potential positive downstream effects on the task of play prediction. Finally, we provide useful insights on the effects of training dataset scale by testing hyper-parameter optimization on an industry-scale dataset. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2707727135</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2707727135</sourcerecordid><originalsourceid>FETCH-proquest_journals_27077271353</originalsourceid><addsrcrecordid>eNqNysEKwiAcgHEJgkbtHYTOgtOWnYvFCKJD3Ydr_y2HU1M3qKevQw_Q6Tv8vhlKGOcZ2W0YW6A0hJ5SyraC5TlP0Ok86qiIrXu4RzUBLl8OPHHSywEieHxxUQ3qLaOyBtsW7-EhJ2W91PhqTYeLoYamUaYLKzRvpQ6Q_rpE62NxO5TEefscIcSqt6M3X6qYoEIwkfGc_3d9AAb5PSw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2707727135</pqid></control><display><type>article</type><title>Multi-objective Hyper-parameter Optimization of Behavioral Song Embeddings</title><source>Free E- Journals</source><creator>Quadrana, Massimo ; Larreche-Mouly, Antoine ; Mauch, Matthias</creator><creatorcontrib>Quadrana, Massimo ; Larreche-Mouly, Antoine ; Mauch, Matthias</creatorcontrib><description>Song embeddings are a key component of most music recommendation engines. In this work, we study the hyper-parameter optimization of behavioral song embeddings based on Word2Vec on a selection of downstream tasks, namely next-song recommendation, false neighbor rejection, and artist and genre clustering. We present new optimization objectives and metrics to monitor the effects of hyper-parameter optimization. We show that single-objective optimization can cause side effects on the non optimized metrics and propose a simple multi-objective optimization to mitigate these effects. We find that next-song recommendation quality of Word2Vec is anti-correlated with song popularity, and we show how song embedding optimization can balance performance across different popularity levels. We then show potential positive downstream effects on the task of play prediction. Finally, we provide useful insights on the effects of training dataset scale by testing hyper-parameter optimization on an industry-scale dataset.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Clustering ; Datasets ; Downstream effects ; Multiple objective analysis ; Optimization ; Parameters ; Recommender systems ; Side effects</subject><ispartof>arXiv.org, 2022-08</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Quadrana, Massimo</creatorcontrib><creatorcontrib>Larreche-Mouly, Antoine</creatorcontrib><creatorcontrib>Mauch, Matthias</creatorcontrib><title>Multi-objective Hyper-parameter Optimization of Behavioral Song Embeddings</title><title>arXiv.org</title><description>Song embeddings are a key component of most music recommendation engines. In this work, we study the hyper-parameter optimization of behavioral song embeddings based on Word2Vec on a selection of downstream tasks, namely next-song recommendation, false neighbor rejection, and artist and genre clustering. We present new optimization objectives and metrics to monitor the effects of hyper-parameter optimization. We show that single-objective optimization can cause side effects on the non optimized metrics and propose a simple multi-objective optimization to mitigate these effects. We find that next-song recommendation quality of Word2Vec is anti-correlated with song popularity, and we show how song embedding optimization can balance performance across different popularity levels. We then show potential positive downstream effects on the task of play prediction. Finally, we provide useful insights on the effects of training dataset scale by testing hyper-parameter optimization on an industry-scale dataset.</description><subject>Clustering</subject><subject>Datasets</subject><subject>Downstream effects</subject><subject>Multiple objective analysis</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Recommender systems</subject><subject>Side effects</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNysEKwiAcgHEJgkbtHYTOgtOWnYvFCKJD3Ydr_y2HU1M3qKevQw_Q6Tv8vhlKGOcZ2W0YW6A0hJ5SyraC5TlP0Ok86qiIrXu4RzUBLl8OPHHSywEieHxxUQ3qLaOyBtsW7-EhJ2W91PhqTYeLoYamUaYLKzRvpQ6Q_rpE62NxO5TEefscIcSqt6M3X6qYoEIwkfGc_3d9AAb5PSw</recordid><startdate>20220826</startdate><enddate>20220826</enddate><creator>Quadrana, Massimo</creator><creator>Larreche-Mouly, Antoine</creator><creator>Mauch, Matthias</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220826</creationdate><title>Multi-objective Hyper-parameter Optimization of Behavioral Song Embeddings</title><author>Quadrana, Massimo ; Larreche-Mouly, Antoine ; Mauch, Matthias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27077271353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Clustering</topic><topic>Datasets</topic><topic>Downstream effects</topic><topic>Multiple objective analysis</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Recommender systems</topic><topic>Side effects</topic><toplevel>online_resources</toplevel><creatorcontrib>Quadrana, Massimo</creatorcontrib><creatorcontrib>Larreche-Mouly, Antoine</creatorcontrib><creatorcontrib>Mauch, Matthias</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Quadrana, Massimo</au><au>Larreche-Mouly, Antoine</au><au>Mauch, Matthias</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Multi-objective Hyper-parameter Optimization of Behavioral Song Embeddings</atitle><jtitle>arXiv.org</jtitle><date>2022-08-26</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Song embeddings are a key component of most music recommendation engines. In this work, we study the hyper-parameter optimization of behavioral song embeddings based on Word2Vec on a selection of downstream tasks, namely next-song recommendation, false neighbor rejection, and artist and genre clustering. We present new optimization objectives and metrics to monitor the effects of hyper-parameter optimization. We show that single-objective optimization can cause side effects on the non optimized metrics and propose a simple multi-objective optimization to mitigate these effects. We find that next-song recommendation quality of Word2Vec is anti-correlated with song popularity, and we show how song embedding optimization can balance performance across different popularity levels. We then show potential positive downstream effects on the task of play prediction. Finally, we provide useful insights on the effects of training dataset scale by testing hyper-parameter optimization on an industry-scale dataset.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-08 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2707727135 |
source | Free E- Journals |
subjects | Clustering Datasets Downstream effects Multiple objective analysis Optimization Parameters Recommender systems Side effects |
title | Multi-objective Hyper-parameter Optimization of Behavioral Song Embeddings |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T22%3A50%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Multi-objective%20Hyper-parameter%20Optimization%20of%20Behavioral%20Song%20Embeddings&rft.jtitle=arXiv.org&rft.au=Quadrana,%20Massimo&rft.date=2022-08-26&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2707727135%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2707727135&rft_id=info:pmid/&rfr_iscdi=true |