Assessing External Validity in Practice

We review, from a practical standpoint, the evolving literature on assessing external validity (EV) of estimated treatment effects. We review existing EV measures, and focus on methods that permit multiple datasets (Hotz et al., 2005). We outline criteria for practical usage, evaluate the existing a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NBER Working Paper Series 2022-08
Hauptverfasser: Galiani, Sebastian, Quistorff, Brian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We review, from a practical standpoint, the evolving literature on assessing external validity (EV) of estimated treatment effects. We review existing EV measures, and focus on methods that permit multiple datasets (Hotz et al., 2005). We outline criteria for practical usage, evaluate the existing approaches, and identify a gap in potential methods. Our practical considerations motivate a novel method utilizing the Group Lasso (Yuan and Lin, 2006) to estimate a tractable regression-based model of the conditional average treatment effect (CATE). This approach can perform better when settings have differing covariate distributions and allows for easily extrapolating the average treatment effect to new settings. We apply these measures to a set of identical field experiments upgrading slum dwellings in three different countries (Galiani et al., 2017).
ISSN:0898-2937
DOI:10.3386/w30398