Broad Elastic Softening of (Mg,Fe)O Ferropericlase Across the Iron Spin Crossover and a Mixed‐Spin Lower Mantle

The elastic bulk modulus softening of (Mg,Fe)O ferropericlase across the iron spin crossover induces dramatic changes in its physical properties, including seismic P‐velocities and viscosity. Here, we performed compression of powders of (Mg0.8‐0.9Fe0.2‐0.1)O in a piezo‐driven dynamic Diamond Anvil C...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Solid earth 2022-08, Vol.127 (8), p.n/a
Hauptverfasser: Méndez, A. S. J., Stackhouse, S., Trautner, V., Wang, B., Satta, N., Kurnosov, A., Husband, R. J., Glazyrin, K., Liermann, H.‐P., Marquardt, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 8
container_start_page
container_title Journal of geophysical research. Solid earth
container_volume 127
creator Méndez, A. S. J.
Stackhouse, S.
Trautner, V.
Wang, B.
Satta, N.
Kurnosov, A.
Husband, R. J.
Glazyrin, K.
Liermann, H.‐P.
Marquardt, H.
description The elastic bulk modulus softening of (Mg,Fe)O ferropericlase across the iron spin crossover induces dramatic changes in its physical properties, including seismic P‐velocities and viscosity. Here, we performed compression of powders of (Mg0.8‐0.9Fe0.2‐0.1)O in a piezo‐driven dynamic Diamond Anvil Cell (dDAC) and derive the bulk modulus by differentiation of pressure and volume data, providing first data on the broadness of the elastic softening for ferropericlase with mantle‐relevant compositions. We complement our experimental results with theoretical calculations that extend previous studies by considering multiple random configurations of iron, and going beyond treating high‐ and low‐spin iron as an ideal solution. Both experiments and computations show a broad and asymmetric softening of the bulk modulus, and suggest that the softening is sensitive to the distribution of iron in the ferropericlase structure. Our high‐temperature calculations show that mixed‐spin (Mg,Fe)O dominates the lower mantle at all depths below 1,000 km. In contrast to most previous works, we find that ferropericlase will not exist in pure low‐spin state along a typical mantle geotherm. Based on our model, the physical properties of ferropericlase will show significant lateral variation at depths below 1,400 km, with the strongest effects expected between 2,000 and 2,600 km. Plain Language Summary Understanding the physical properties of deep mantle minerals is pivotal to interpret geophysical observables and constrain large‐scale geodynamic models. (Mg,Fe)O ferropericlase is the second most abundant mineral in Earth's lower mantle, ranging from 660 to 2,890 km depths. Previous works have shown that the electronic configuration of iron in ferropericlase changes at pressures corresponding to the mid‐mantle. This process, called iron‐spin crossover, markedly affects a variety of physical properties, including seismic wave speeds and viscosity. Here we combine novel experiments and theoretical calculations to provide a coherent picture of the onset depth and broadness of the spin crossover in Earth's lower mantle. We show that the spin crossover happens throughout most of the lower mantle, altering physical properties at most depths up to the core‐mantle boundary. This quantitative understanding is key to model the impacts of the spin crossover on geophysical mantle properties and mantle dynamics. Key Points We constrain the broadness of the iron spin crossover by a combination of
doi_str_mv 10.1029/2021JB023832
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2707592598</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2707592598</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3687-b1d4f26e4bed815137ebdf276ca678b904f1b9cbf3b36c54efa30585235083f23</originalsourceid><addsrcrecordid>eNp9kM9OwkAQxjdGEwly8wE28aIJ1f3TbbdHIIAQiInoudm2s7ikdsu2iNx8BJ_RJ7GAMZ6cy0y-75eZzIfQJSW3lLDojhFGp33CuOTsBLUYDSIv4iI4_Z0pP0edqlqRpmQjUb-F1n1nVYaHuapqk-KF1TUUplhiq_H1fNkdwc0DHoFztgRn0gYD3EudrSpcvwCeOFvgRWkKPNhr9g0cVkWGFZ6bd8i-Pj4P5sxuG2OuijqHC3SmVV5B56e30fNo-DS492YP48mgN_MUD2ToJTTzNQvATyCTVFAeQpJpFgapCkKZRMTXNInSRPOEB6nwQStOhBSMCyK5ZryNro57S2fXG6jqeGU3rmhOxiwkoYiYiGRDdY_U4ScHOi6deVVuF1MS73ON_-ba4PyIb00Ou3_ZeDp-7Ashaci_AcVxeLk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2707592598</pqid></control><display><type>article</type><title>Broad Elastic Softening of (Mg,Fe)O Ferropericlase Across the Iron Spin Crossover and a Mixed‐Spin Lower Mantle</title><source>Wiley Free Content</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Méndez, A. S. J. ; Stackhouse, S. ; Trautner, V. ; Wang, B. ; Satta, N. ; Kurnosov, A. ; Husband, R. J. ; Glazyrin, K. ; Liermann, H.‐P. ; Marquardt, H.</creator><creatorcontrib>Méndez, A. S. J. ; Stackhouse, S. ; Trautner, V. ; Wang, B. ; Satta, N. ; Kurnosov, A. ; Husband, R. J. ; Glazyrin, K. ; Liermann, H.‐P. ; Marquardt, H.</creatorcontrib><description>The elastic bulk modulus softening of (Mg,Fe)O ferropericlase across the iron spin crossover induces dramatic changes in its physical properties, including seismic P‐velocities and viscosity. Here, we performed compression of powders of (Mg0.8‐0.9Fe0.2‐0.1)O in a piezo‐driven dynamic Diamond Anvil Cell (dDAC) and derive the bulk modulus by differentiation of pressure and volume data, providing first data on the broadness of the elastic softening for ferropericlase with mantle‐relevant compositions. We complement our experimental results with theoretical calculations that extend previous studies by considering multiple random configurations of iron, and going beyond treating high‐ and low‐spin iron as an ideal solution. Both experiments and computations show a broad and asymmetric softening of the bulk modulus, and suggest that the softening is sensitive to the distribution of iron in the ferropericlase structure. Our high‐temperature calculations show that mixed‐spin (Mg,Fe)O dominates the lower mantle at all depths below 1,000 km. In contrast to most previous works, we find that ferropericlase will not exist in pure low‐spin state along a typical mantle geotherm. Based on our model, the physical properties of ferropericlase will show significant lateral variation at depths below 1,400 km, with the strongest effects expected between 2,000 and 2,600 km. Plain Language Summary Understanding the physical properties of deep mantle minerals is pivotal to interpret geophysical observables and constrain large‐scale geodynamic models. (Mg,Fe)O ferropericlase is the second most abundant mineral in Earth's lower mantle, ranging from 660 to 2,890 km depths. Previous works have shown that the electronic configuration of iron in ferropericlase changes at pressures corresponding to the mid‐mantle. This process, called iron‐spin crossover, markedly affects a variety of physical properties, including seismic wave speeds and viscosity. Here we combine novel experiments and theoretical calculations to provide a coherent picture of the onset depth and broadness of the spin crossover in Earth's lower mantle. We show that the spin crossover happens throughout most of the lower mantle, altering physical properties at most depths up to the core‐mantle boundary. This quantitative understanding is key to model the impacts of the spin crossover on geophysical mantle properties and mantle dynamics. Key Points We constrain the broadness of the iron spin crossover by a combination of novel experiments and computations We find a broad and asymmetric spin crossover range, which is sensitive to the distribution of iron in the ferropericlase structure Ferropericlase is in mixed‐spin state throughout the lower mantle, but shows lateral spin state variations, impacting on mantle properties</description><identifier>ISSN: 2169-9313</identifier><identifier>EISSN: 2169-9356</identifier><identifier>DOI: 10.1029/2021JB023832</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Bulk modulus ; Compression ; Configurations ; Depth ; Diamond anvil cells ; Diamonds ; dynamic compression ; Earth ; Earth mantle ; elastic softening ; ferropericlase ; Geophysics ; Iron ; Lower mantle ; Magnesium ; Mechanical properties ; Minerals ; mixed‐spin ; Modulus of elasticity ; P-waves ; Physical properties ; Seismic waves ; Softening ; spin crossover ; Temperature calculations ; Viscosity</subject><ispartof>Journal of geophysical research. Solid earth, 2022-08, Vol.127 (8), p.n/a</ispartof><rights>2022. The Authors.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3687-b1d4f26e4bed815137ebdf276ca678b904f1b9cbf3b36c54efa30585235083f23</citedby><cites>FETCH-LOGICAL-a3687-b1d4f26e4bed815137ebdf276ca678b904f1b9cbf3b36c54efa30585235083f23</cites><orcidid>0000-0002-1182-4481 ; 0000-0002-7666-401X ; 0000-0002-5296-9265 ; 0000-0001-5299-5589 ; 0000-0003-0397-6511 ; 0000-0001-5049-4035 ; 0000-0001-5039-1183 ; 0000-0003-1784-6515</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2021JB023832$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2021JB023832$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids></links><search><creatorcontrib>Méndez, A. S. J.</creatorcontrib><creatorcontrib>Stackhouse, S.</creatorcontrib><creatorcontrib>Trautner, V.</creatorcontrib><creatorcontrib>Wang, B.</creatorcontrib><creatorcontrib>Satta, N.</creatorcontrib><creatorcontrib>Kurnosov, A.</creatorcontrib><creatorcontrib>Husband, R. J.</creatorcontrib><creatorcontrib>Glazyrin, K.</creatorcontrib><creatorcontrib>Liermann, H.‐P.</creatorcontrib><creatorcontrib>Marquardt, H.</creatorcontrib><title>Broad Elastic Softening of (Mg,Fe)O Ferropericlase Across the Iron Spin Crossover and a Mixed‐Spin Lower Mantle</title><title>Journal of geophysical research. Solid earth</title><description>The elastic bulk modulus softening of (Mg,Fe)O ferropericlase across the iron spin crossover induces dramatic changes in its physical properties, including seismic P‐velocities and viscosity. Here, we performed compression of powders of (Mg0.8‐0.9Fe0.2‐0.1)O in a piezo‐driven dynamic Diamond Anvil Cell (dDAC) and derive the bulk modulus by differentiation of pressure and volume data, providing first data on the broadness of the elastic softening for ferropericlase with mantle‐relevant compositions. We complement our experimental results with theoretical calculations that extend previous studies by considering multiple random configurations of iron, and going beyond treating high‐ and low‐spin iron as an ideal solution. Both experiments and computations show a broad and asymmetric softening of the bulk modulus, and suggest that the softening is sensitive to the distribution of iron in the ferropericlase structure. Our high‐temperature calculations show that mixed‐spin (Mg,Fe)O dominates the lower mantle at all depths below 1,000 km. In contrast to most previous works, we find that ferropericlase will not exist in pure low‐spin state along a typical mantle geotherm. Based on our model, the physical properties of ferropericlase will show significant lateral variation at depths below 1,400 km, with the strongest effects expected between 2,000 and 2,600 km. Plain Language Summary Understanding the physical properties of deep mantle minerals is pivotal to interpret geophysical observables and constrain large‐scale geodynamic models. (Mg,Fe)O ferropericlase is the second most abundant mineral in Earth's lower mantle, ranging from 660 to 2,890 km depths. Previous works have shown that the electronic configuration of iron in ferropericlase changes at pressures corresponding to the mid‐mantle. This process, called iron‐spin crossover, markedly affects a variety of physical properties, including seismic wave speeds and viscosity. Here we combine novel experiments and theoretical calculations to provide a coherent picture of the onset depth and broadness of the spin crossover in Earth's lower mantle. We show that the spin crossover happens throughout most of the lower mantle, altering physical properties at most depths up to the core‐mantle boundary. This quantitative understanding is key to model the impacts of the spin crossover on geophysical mantle properties and mantle dynamics. Key Points We constrain the broadness of the iron spin crossover by a combination of novel experiments and computations We find a broad and asymmetric spin crossover range, which is sensitive to the distribution of iron in the ferropericlase structure Ferropericlase is in mixed‐spin state throughout the lower mantle, but shows lateral spin state variations, impacting on mantle properties</description><subject>Bulk modulus</subject><subject>Compression</subject><subject>Configurations</subject><subject>Depth</subject><subject>Diamond anvil cells</subject><subject>Diamonds</subject><subject>dynamic compression</subject><subject>Earth</subject><subject>Earth mantle</subject><subject>elastic softening</subject><subject>ferropericlase</subject><subject>Geophysics</subject><subject>Iron</subject><subject>Lower mantle</subject><subject>Magnesium</subject><subject>Mechanical properties</subject><subject>Minerals</subject><subject>mixed‐spin</subject><subject>Modulus of elasticity</subject><subject>P-waves</subject><subject>Physical properties</subject><subject>Seismic waves</subject><subject>Softening</subject><subject>spin crossover</subject><subject>Temperature calculations</subject><subject>Viscosity</subject><issn>2169-9313</issn><issn>2169-9356</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp9kM9OwkAQxjdGEwly8wE28aIJ1f3TbbdHIIAQiInoudm2s7ikdsu2iNx8BJ_RJ7GAMZ6cy0y-75eZzIfQJSW3lLDojhFGp33CuOTsBLUYDSIv4iI4_Z0pP0edqlqRpmQjUb-F1n1nVYaHuapqk-KF1TUUplhiq_H1fNkdwc0DHoFztgRn0gYD3EudrSpcvwCeOFvgRWkKPNhr9g0cVkWGFZ6bd8i-Pj4P5sxuG2OuijqHC3SmVV5B56e30fNo-DS492YP48mgN_MUD2ToJTTzNQvATyCTVFAeQpJpFgapCkKZRMTXNInSRPOEB6nwQStOhBSMCyK5ZryNro57S2fXG6jqeGU3rmhOxiwkoYiYiGRDdY_U4ScHOi6deVVuF1MS73ON_-ba4PyIb00Ou3_ZeDp-7Ashaci_AcVxeLk</recordid><startdate>202208</startdate><enddate>202208</enddate><creator>Méndez, A. S. J.</creator><creator>Stackhouse, S.</creator><creator>Trautner, V.</creator><creator>Wang, B.</creator><creator>Satta, N.</creator><creator>Kurnosov, A.</creator><creator>Husband, R. J.</creator><creator>Glazyrin, K.</creator><creator>Liermann, H.‐P.</creator><creator>Marquardt, H.</creator><general>Blackwell Publishing Ltd</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TG</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-1182-4481</orcidid><orcidid>https://orcid.org/0000-0002-7666-401X</orcidid><orcidid>https://orcid.org/0000-0002-5296-9265</orcidid><orcidid>https://orcid.org/0000-0001-5299-5589</orcidid><orcidid>https://orcid.org/0000-0003-0397-6511</orcidid><orcidid>https://orcid.org/0000-0001-5049-4035</orcidid><orcidid>https://orcid.org/0000-0001-5039-1183</orcidid><orcidid>https://orcid.org/0000-0003-1784-6515</orcidid></search><sort><creationdate>202208</creationdate><title>Broad Elastic Softening of (Mg,Fe)O Ferropericlase Across the Iron Spin Crossover and a Mixed‐Spin Lower Mantle</title><author>Méndez, A. S. J. ; Stackhouse, S. ; Trautner, V. ; Wang, B. ; Satta, N. ; Kurnosov, A. ; Husband, R. J. ; Glazyrin, K. ; Liermann, H.‐P. ; Marquardt, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3687-b1d4f26e4bed815137ebdf276ca678b904f1b9cbf3b36c54efa30585235083f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bulk modulus</topic><topic>Compression</topic><topic>Configurations</topic><topic>Depth</topic><topic>Diamond anvil cells</topic><topic>Diamonds</topic><topic>dynamic compression</topic><topic>Earth</topic><topic>Earth mantle</topic><topic>elastic softening</topic><topic>ferropericlase</topic><topic>Geophysics</topic><topic>Iron</topic><topic>Lower mantle</topic><topic>Magnesium</topic><topic>Mechanical properties</topic><topic>Minerals</topic><topic>mixed‐spin</topic><topic>Modulus of elasticity</topic><topic>P-waves</topic><topic>Physical properties</topic><topic>Seismic waves</topic><topic>Softening</topic><topic>spin crossover</topic><topic>Temperature calculations</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Méndez, A. S. J.</creatorcontrib><creatorcontrib>Stackhouse, S.</creatorcontrib><creatorcontrib>Trautner, V.</creatorcontrib><creatorcontrib>Wang, B.</creatorcontrib><creatorcontrib>Satta, N.</creatorcontrib><creatorcontrib>Kurnosov, A.</creatorcontrib><creatorcontrib>Husband, R. J.</creatorcontrib><creatorcontrib>Glazyrin, K.</creatorcontrib><creatorcontrib>Liermann, H.‐P.</creatorcontrib><creatorcontrib>Marquardt, H.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of geophysical research. Solid earth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Méndez, A. S. J.</au><au>Stackhouse, S.</au><au>Trautner, V.</au><au>Wang, B.</au><au>Satta, N.</au><au>Kurnosov, A.</au><au>Husband, R. J.</au><au>Glazyrin, K.</au><au>Liermann, H.‐P.</au><au>Marquardt, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Broad Elastic Softening of (Mg,Fe)O Ferropericlase Across the Iron Spin Crossover and a Mixed‐Spin Lower Mantle</atitle><jtitle>Journal of geophysical research. Solid earth</jtitle><date>2022-08</date><risdate>2022</risdate><volume>127</volume><issue>8</issue><epage>n/a</epage><issn>2169-9313</issn><eissn>2169-9356</eissn><abstract>The elastic bulk modulus softening of (Mg,Fe)O ferropericlase across the iron spin crossover induces dramatic changes in its physical properties, including seismic P‐velocities and viscosity. Here, we performed compression of powders of (Mg0.8‐0.9Fe0.2‐0.1)O in a piezo‐driven dynamic Diamond Anvil Cell (dDAC) and derive the bulk modulus by differentiation of pressure and volume data, providing first data on the broadness of the elastic softening for ferropericlase with mantle‐relevant compositions. We complement our experimental results with theoretical calculations that extend previous studies by considering multiple random configurations of iron, and going beyond treating high‐ and low‐spin iron as an ideal solution. Both experiments and computations show a broad and asymmetric softening of the bulk modulus, and suggest that the softening is sensitive to the distribution of iron in the ferropericlase structure. Our high‐temperature calculations show that mixed‐spin (Mg,Fe)O dominates the lower mantle at all depths below 1,000 km. In contrast to most previous works, we find that ferropericlase will not exist in pure low‐spin state along a typical mantle geotherm. Based on our model, the physical properties of ferropericlase will show significant lateral variation at depths below 1,400 km, with the strongest effects expected between 2,000 and 2,600 km. Plain Language Summary Understanding the physical properties of deep mantle minerals is pivotal to interpret geophysical observables and constrain large‐scale geodynamic models. (Mg,Fe)O ferropericlase is the second most abundant mineral in Earth's lower mantle, ranging from 660 to 2,890 km depths. Previous works have shown that the electronic configuration of iron in ferropericlase changes at pressures corresponding to the mid‐mantle. This process, called iron‐spin crossover, markedly affects a variety of physical properties, including seismic wave speeds and viscosity. Here we combine novel experiments and theoretical calculations to provide a coherent picture of the onset depth and broadness of the spin crossover in Earth's lower mantle. We show that the spin crossover happens throughout most of the lower mantle, altering physical properties at most depths up to the core‐mantle boundary. This quantitative understanding is key to model the impacts of the spin crossover on geophysical mantle properties and mantle dynamics. Key Points We constrain the broadness of the iron spin crossover by a combination of novel experiments and computations We find a broad and asymmetric spin crossover range, which is sensitive to the distribution of iron in the ferropericlase structure Ferropericlase is in mixed‐spin state throughout the lower mantle, but shows lateral spin state variations, impacting on mantle properties</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2021JB023832</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1182-4481</orcidid><orcidid>https://orcid.org/0000-0002-7666-401X</orcidid><orcidid>https://orcid.org/0000-0002-5296-9265</orcidid><orcidid>https://orcid.org/0000-0001-5299-5589</orcidid><orcidid>https://orcid.org/0000-0003-0397-6511</orcidid><orcidid>https://orcid.org/0000-0001-5049-4035</orcidid><orcidid>https://orcid.org/0000-0001-5039-1183</orcidid><orcidid>https://orcid.org/0000-0003-1784-6515</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-9313
ispartof Journal of geophysical research. Solid earth, 2022-08, Vol.127 (8), p.n/a
issn 2169-9313
2169-9356
language eng
recordid cdi_proquest_journals_2707592598
source Wiley Free Content; Wiley Online Library Journals Frontfile Complete
subjects Bulk modulus
Compression
Configurations
Depth
Diamond anvil cells
Diamonds
dynamic compression
Earth
Earth mantle
elastic softening
ferropericlase
Geophysics
Iron
Lower mantle
Magnesium
Mechanical properties
Minerals
mixed‐spin
Modulus of elasticity
P-waves
Physical properties
Seismic waves
Softening
spin crossover
Temperature calculations
Viscosity
title Broad Elastic Softening of (Mg,Fe)O Ferropericlase Across the Iron Spin Crossover and a Mixed‐Spin Lower Mantle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T06%3A52%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Broad%20Elastic%20Softening%20of%20(Mg,Fe)O%20Ferropericlase%20Across%20the%20Iron%20Spin%20Crossover%20and%20a%20Mixed%E2%80%90Spin%20Lower%20Mantle&rft.jtitle=Journal%20of%20geophysical%20research.%20Solid%20earth&rft.au=M%C3%A9ndez,%20A.%20S.%20J.&rft.date=2022-08&rft.volume=127&rft.issue=8&rft.epage=n/a&rft.issn=2169-9313&rft.eissn=2169-9356&rft_id=info:doi/10.1029/2021JB023832&rft_dat=%3Cproquest_cross%3E2707592598%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2707592598&rft_id=info:pmid/&rfr_iscdi=true