Deep Learning-Based Localization with Urban Electromagnetic and Geographic Information
There is a growing demand for localization of illegal signal sources, aiming to guarantee the security of urban electromagnetic environment. The performance of traditional localization methods is limited due to the non-line-of-sight (NLOS) propagation and sparse layouts of sensors. In this paper, a...
Gespeichert in:
Veröffentlicht in: | Wireless communications and mobile computing 2022-08, Vol.2022, p.1-10 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Wireless communications and mobile computing |
container_volume | 2022 |
creator | Wang, Wenyu Li, Baozhu Huang, Zhen Zhu, Lei |
description | There is a growing demand for localization of illegal signal sources, aiming to guarantee the security of urban electromagnetic environment. The performance of traditional localization methods is limited due to the non-line-of-sight (NLOS) propagation and sparse layouts of sensors. In this paper, a deep learning-based localization method is proposed to overcome these issues in urban scenarios. Firstly, a model of electromagnetic wave propagation considered with geographic information is proposed to prepare reliable datasets for intelligent cognition of urban electromagnetic environment. Then, this paper improves an hourglass neural network which consists of downsampling and upsampling layers to learn the propagation features from sensing data. The core modules of VGG and ResNet are, respectively, utilized as feature extractors in downsampling. Moreover, this paper proposes a weighted loss function to expand the attention on position features, in order to improve the performance of localization with sparse layouts of sensors. Representative numerical results are discussed to assess the proposed method. ResNet-based extractor performs more efficiently than VGG-based extractor, and the proposed weighted loss function increases the localization accuracy by more than 50%. Additionally, the established geographic model supports qualitative and quantitative evaluation of the robustness with varied degree of NLOS propagation. Compared with other deep learning-based algorithms, the proposed method presents the more robust and superior performance under severe NLOS propagation and sparse sensing conditions. |
doi_str_mv | 10.1155/2022/9680479 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2707456730</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2707456730</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-745de9d537d24554e03ef872e9dfc98af85b92c1b07bc78b39cde4690a1f41fc3</originalsourceid><addsrcrecordid>eNp9kMtOAjEUhhujiYjufIAmLnWkl-l0ulRAJJnEjbhtOr1ACbRjZwjRp3cQ4tLVueQ7_0k-AG4xesSYsRFBhIxEUaKcizMwwIyirCw4P__rC3EJrtp2jRCiiOAB-JhY28DKqhR8WGbPqrUGVlGrjf9WnY8B7n23gotUqwCnG6u7FLdqGWznNVTBwJmNy6SaVT_Og4tp-3t1DS6c2rT25lSHYPEyfR-_ZtXbbD5-qjJNKe8ynjNjhWGUG5IzlltErSs56XdOi1K5ktWCaFwjXmte1lRoY_NCIIVdjp2mQ3B3zG1S_NzZtpPruEuhfykJR318wSnqqYcjpVNs22SdbJLfqvQlMZIHc_JgTp7M9fj9EV_5YNTe_0__AA1xbcY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2707456730</pqid></control><display><type>article</type><title>Deep Learning-Based Localization with Urban Electromagnetic and Geographic Information</title><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Wang, Wenyu ; Li, Baozhu ; Huang, Zhen ; Zhu, Lei</creator><contributor>Liu, Mingqian ; Mingqian Liu</contributor><creatorcontrib>Wang, Wenyu ; Li, Baozhu ; Huang, Zhen ; Zhu, Lei ; Liu, Mingqian ; Mingqian Liu</creatorcontrib><description>There is a growing demand for localization of illegal signal sources, aiming to guarantee the security of urban electromagnetic environment. The performance of traditional localization methods is limited due to the non-line-of-sight (NLOS) propagation and sparse layouts of sensors. In this paper, a deep learning-based localization method is proposed to overcome these issues in urban scenarios. Firstly, a model of electromagnetic wave propagation considered with geographic information is proposed to prepare reliable datasets for intelligent cognition of urban electromagnetic environment. Then, this paper improves an hourglass neural network which consists of downsampling and upsampling layers to learn the propagation features from sensing data. The core modules of VGG and ResNet are, respectively, utilized as feature extractors in downsampling. Moreover, this paper proposes a weighted loss function to expand the attention on position features, in order to improve the performance of localization with sparse layouts of sensors. Representative numerical results are discussed to assess the proposed method. ResNet-based extractor performs more efficiently than VGG-based extractor, and the proposed weighted loss function increases the localization accuracy by more than 50%. Additionally, the established geographic model supports qualitative and quantitative evaluation of the robustness with varied degree of NLOS propagation. Compared with other deep learning-based algorithms, the proposed method presents the more robust and superior performance under severe NLOS propagation and sparse sensing conditions.</description><identifier>ISSN: 1530-8669</identifier><identifier>EISSN: 1530-8677</identifier><identifier>DOI: 10.1155/2022/9680479</identifier><language>eng</language><publisher>Oxford: Hindawi</publisher><subject>Algorithms ; Cognition ; Cognition & reasoning ; Datasets ; Deep learning ; Electromagnetic radiation ; Feature extraction ; Geographic information systems ; Geography ; Layouts ; Localization ; Localization method ; Machine learning ; Neural networks ; Optimization ; Parameter estimation ; Performance enhancement ; Propagation ; Robustness (mathematics) ; Sensors ; Urban areas ; Wave propagation</subject><ispartof>Wireless communications and mobile computing, 2022-08, Vol.2022, p.1-10</ispartof><rights>Copyright © 2022 Wenyu Wang et al.</rights><rights>Copyright © 2022 Wenyu Wang et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-745de9d537d24554e03ef872e9dfc98af85b92c1b07bc78b39cde4690a1f41fc3</citedby><cites>FETCH-LOGICAL-c337t-745de9d537d24554e03ef872e9dfc98af85b92c1b07bc78b39cde4690a1f41fc3</cites><orcidid>0000-0001-6772-1839 ; 0000-0002-1023-0585 ; 0000-0002-5441-7229 ; 0000-0003-4716-1437</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><contributor>Liu, Mingqian</contributor><contributor>Mingqian Liu</contributor><creatorcontrib>Wang, Wenyu</creatorcontrib><creatorcontrib>Li, Baozhu</creatorcontrib><creatorcontrib>Huang, Zhen</creatorcontrib><creatorcontrib>Zhu, Lei</creatorcontrib><title>Deep Learning-Based Localization with Urban Electromagnetic and Geographic Information</title><title>Wireless communications and mobile computing</title><description>There is a growing demand for localization of illegal signal sources, aiming to guarantee the security of urban electromagnetic environment. The performance of traditional localization methods is limited due to the non-line-of-sight (NLOS) propagation and sparse layouts of sensors. In this paper, a deep learning-based localization method is proposed to overcome these issues in urban scenarios. Firstly, a model of electromagnetic wave propagation considered with geographic information is proposed to prepare reliable datasets for intelligent cognition of urban electromagnetic environment. Then, this paper improves an hourglass neural network which consists of downsampling and upsampling layers to learn the propagation features from sensing data. The core modules of VGG and ResNet are, respectively, utilized as feature extractors in downsampling. Moreover, this paper proposes a weighted loss function to expand the attention on position features, in order to improve the performance of localization with sparse layouts of sensors. Representative numerical results are discussed to assess the proposed method. ResNet-based extractor performs more efficiently than VGG-based extractor, and the proposed weighted loss function increases the localization accuracy by more than 50%. Additionally, the established geographic model supports qualitative and quantitative evaluation of the robustness with varied degree of NLOS propagation. Compared with other deep learning-based algorithms, the proposed method presents the more robust and superior performance under severe NLOS propagation and sparse sensing conditions.</description><subject>Algorithms</subject><subject>Cognition</subject><subject>Cognition & reasoning</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Electromagnetic radiation</subject><subject>Feature extraction</subject><subject>Geographic information systems</subject><subject>Geography</subject><subject>Layouts</subject><subject>Localization</subject><subject>Localization method</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Parameter estimation</subject><subject>Performance enhancement</subject><subject>Propagation</subject><subject>Robustness (mathematics)</subject><subject>Sensors</subject><subject>Urban areas</subject><subject>Wave propagation</subject><issn>1530-8669</issn><issn>1530-8677</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kMtOAjEUhhujiYjufIAmLnWkl-l0ulRAJJnEjbhtOr1ACbRjZwjRp3cQ4tLVueQ7_0k-AG4xesSYsRFBhIxEUaKcizMwwIyirCw4P__rC3EJrtp2jRCiiOAB-JhY28DKqhR8WGbPqrUGVlGrjf9WnY8B7n23gotUqwCnG6u7FLdqGWznNVTBwJmNy6SaVT_Og4tp-3t1DS6c2rT25lSHYPEyfR-_ZtXbbD5-qjJNKe8ynjNjhWGUG5IzlltErSs56XdOi1K5ktWCaFwjXmte1lRoY_NCIIVdjp2mQ3B3zG1S_NzZtpPruEuhfykJR318wSnqqYcjpVNs22SdbJLfqvQlMZIHc_JgTp7M9fj9EV_5YNTe_0__AA1xbcY</recordid><startdate>20220821</startdate><enddate>20220821</enddate><creator>Wang, Wenyu</creator><creator>Li, Baozhu</creator><creator>Huang, Zhen</creator><creator>Zhu, Lei</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-6772-1839</orcidid><orcidid>https://orcid.org/0000-0002-1023-0585</orcidid><orcidid>https://orcid.org/0000-0002-5441-7229</orcidid><orcidid>https://orcid.org/0000-0003-4716-1437</orcidid></search><sort><creationdate>20220821</creationdate><title>Deep Learning-Based Localization with Urban Electromagnetic and Geographic Information</title><author>Wang, Wenyu ; Li, Baozhu ; Huang, Zhen ; Zhu, Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-745de9d537d24554e03ef872e9dfc98af85b92c1b07bc78b39cde4690a1f41fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Cognition</topic><topic>Cognition & reasoning</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Electromagnetic radiation</topic><topic>Feature extraction</topic><topic>Geographic information systems</topic><topic>Geography</topic><topic>Layouts</topic><topic>Localization</topic><topic>Localization method</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Parameter estimation</topic><topic>Performance enhancement</topic><topic>Propagation</topic><topic>Robustness (mathematics)</topic><topic>Sensors</topic><topic>Urban areas</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Wenyu</creatorcontrib><creatorcontrib>Li, Baozhu</creatorcontrib><creatorcontrib>Huang, Zhen</creatorcontrib><creatorcontrib>Zhu, Lei</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Wireless communications and mobile computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Wenyu</au><au>Li, Baozhu</au><au>Huang, Zhen</au><au>Zhu, Lei</au><au>Liu, Mingqian</au><au>Mingqian Liu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Learning-Based Localization with Urban Electromagnetic and Geographic Information</atitle><jtitle>Wireless communications and mobile computing</jtitle><date>2022-08-21</date><risdate>2022</risdate><volume>2022</volume><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>1530-8669</issn><eissn>1530-8677</eissn><abstract>There is a growing demand for localization of illegal signal sources, aiming to guarantee the security of urban electromagnetic environment. The performance of traditional localization methods is limited due to the non-line-of-sight (NLOS) propagation and sparse layouts of sensors. In this paper, a deep learning-based localization method is proposed to overcome these issues in urban scenarios. Firstly, a model of electromagnetic wave propagation considered with geographic information is proposed to prepare reliable datasets for intelligent cognition of urban electromagnetic environment. Then, this paper improves an hourglass neural network which consists of downsampling and upsampling layers to learn the propagation features from sensing data. The core modules of VGG and ResNet are, respectively, utilized as feature extractors in downsampling. Moreover, this paper proposes a weighted loss function to expand the attention on position features, in order to improve the performance of localization with sparse layouts of sensors. Representative numerical results are discussed to assess the proposed method. ResNet-based extractor performs more efficiently than VGG-based extractor, and the proposed weighted loss function increases the localization accuracy by more than 50%. Additionally, the established geographic model supports qualitative and quantitative evaluation of the robustness with varied degree of NLOS propagation. Compared with other deep learning-based algorithms, the proposed method presents the more robust and superior performance under severe NLOS propagation and sparse sensing conditions.</abstract><cop>Oxford</cop><pub>Hindawi</pub><doi>10.1155/2022/9680479</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6772-1839</orcidid><orcidid>https://orcid.org/0000-0002-1023-0585</orcidid><orcidid>https://orcid.org/0000-0002-5441-7229</orcidid><orcidid>https://orcid.org/0000-0003-4716-1437</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-8669 |
ispartof | Wireless communications and mobile computing, 2022-08, Vol.2022, p.1-10 |
issn | 1530-8669 1530-8677 |
language | eng |
recordid | cdi_proquest_journals_2707456730 |
source | Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Algorithms Cognition Cognition & reasoning Datasets Deep learning Electromagnetic radiation Feature extraction Geographic information systems Geography Layouts Localization Localization method Machine learning Neural networks Optimization Parameter estimation Performance enhancement Propagation Robustness (mathematics) Sensors Urban areas Wave propagation |
title | Deep Learning-Based Localization with Urban Electromagnetic and Geographic Information |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T12%3A39%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Learning-Based%20Localization%20with%20Urban%20Electromagnetic%20and%20Geographic%20Information&rft.jtitle=Wireless%20communications%20and%20mobile%20computing&rft.au=Wang,%20Wenyu&rft.date=2022-08-21&rft.volume=2022&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=1530-8669&rft.eissn=1530-8677&rft_id=info:doi/10.1155/2022/9680479&rft_dat=%3Cproquest_cross%3E2707456730%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2707456730&rft_id=info:pmid/&rfr_iscdi=true |