A Precision Marketing Strategy of e-Commerce Platform Based on Consumer Behavior Analysis in the Era of Big Data

In order to develop a more efficient and accurate marketing strategy for consumers’ purchase behavior, this paper establishes a user value model by modeling and learning the user historical data of e-commerce enterprises. The improved K-means algorithm is used to cluster the purchase behavior of use...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2022-08, Vol.2022, p.1-8
Hauptverfasser: Zhang, Di, Huang, Minghao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In order to develop a more efficient and accurate marketing strategy for consumers’ purchase behavior, this paper establishes a user value model by modeling and learning the user historical data of e-commerce enterprises. The improved K-means algorithm is used to cluster the purchase behavior of users, and the customer value matrix is constructed from two dimensions of consumption frequency and average consumption amount. Finally, e-commerce users are classified into four categories by marking points. The test results show that the improved K-means algorithm is stable and efficient, and the analysis of user clustering characteristics is helpful to develop more accurate marketing strategies.
ISSN:1024-123X
1563-5147
DOI:10.1155/2022/8580561