Lithology identification method based on integrated K-means clustering and meta-object representation
Aiming at the problem that the basic identification unit constructed by the existing lithology identification method cannot fully utilize the context information provided by the continuity of logging curves and the potential information in each layer segment, a lithology identification method based...
Gespeichert in:
Veröffentlicht in: | Arabian journal of geosciences 2022-09, Vol.15 (17), Article 1462 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 17 |
container_start_page | |
container_title | Arabian journal of geosciences |
container_volume | 15 |
creator | Cao, Zhimin Yang, Can Han, Jian Mu, Haiwei Wan, Chuan Gao, Pan |
description | Aiming at the problem that the basic identification unit constructed by the existing lithology identification method cannot fully utilize the context information provided by the continuity of logging curves and the potential information in each layer segment, a lithology identification method based on integrated K-means clustering and meta-object representation is proposed. The K-means clustering method is used to automatically layer multiple conventional logging curves of the target reservoir, and the obtained layer is used to construct a meta-object for lithology identification. Specifically, in order to improve the accuracy of meta-object construction, clusters with sufficient differences are generated, and an undirected graph between different clusters is constructed to help achieve accurate layering. And then, with the obtained meta-objects, a complete meta-object representation can be constructed from both the statistical and shape perspectives. Finally, with well-represented meta-objects, popular machine learning techniques can be used for lithology identification tasks. The experimental results show that the feature representation of meta-objects obtained by the proposed ensemble K-means clustering method has a strong reservoir characterization ability. With the well-represented meta-objects, lithology identification accuracy can be significantly improved. |
doi_str_mv | 10.1007/s12517-022-10693-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2707399549</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2707399549</sourcerecordid><originalsourceid>FETCH-LOGICAL-a1873-5300935e313c9227bd4f8eada609594ab8d435e0f4bf2bb195fee713aa47c9743</originalsourceid><addsrcrecordid>eNp9UMlOwzAQtRBIlMIPcIrE2eAljuMjqthEJS5wtpx4XFy1cbDdQ_8et0Fw4zTz9JbRPISuKbmlhMi7RJmgEhPGMCWN4pifoBltmwZLwdvT353Sc3SR0pqQpiWynSFY-vwZNmG1r7yFIXvne5N9GKotFMJWnUlgq4L9kGEVTS7oFW_BDKnqN7uUIfphVZnBHhwGh24Nfa4ijBFSCTyGXaIzZzYJrn7mHH08PrwvnvHy7ellcb_EhraSY8EJUVwAp7xXjMnO1q4FY01DlFC16VpbF5q4unOs66gSDkBSbkwteyVrPkc3U-4Yw9cOUtbrsItDOamZJJIrJWpVVGxS9TGkFMHpMfqtiXtNiT7Uqac6dalTH-vUvJj4ZErj4WGIf9H_uL4BR1R5aQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2707399549</pqid></control><display><type>article</type><title>Lithology identification method based on integrated K-means clustering and meta-object representation</title><source>Springer Nature - Complete Springer Journals</source><creator>Cao, Zhimin ; Yang, Can ; Han, Jian ; Mu, Haiwei ; Wan, Chuan ; Gao, Pan</creator><creatorcontrib>Cao, Zhimin ; Yang, Can ; Han, Jian ; Mu, Haiwei ; Wan, Chuan ; Gao, Pan</creatorcontrib><description>Aiming at the problem that the basic identification unit constructed by the existing lithology identification method cannot fully utilize the context information provided by the continuity of logging curves and the potential information in each layer segment, a lithology identification method based on integrated K-means clustering and meta-object representation is proposed. The K-means clustering method is used to automatically layer multiple conventional logging curves of the target reservoir, and the obtained layer is used to construct a meta-object for lithology identification. Specifically, in order to improve the accuracy of meta-object construction, clusters with sufficient differences are generated, and an undirected graph between different clusters is constructed to help achieve accurate layering. And then, with the obtained meta-objects, a complete meta-object representation can be constructed from both the statistical and shape perspectives. Finally, with well-represented meta-objects, popular machine learning techniques can be used for lithology identification tasks. The experimental results show that the feature representation of meta-objects obtained by the proposed ensemble K-means clustering method has a strong reservoir characterization ability. With the well-represented meta-objects, lithology identification accuracy can be significantly improved.</description><identifier>ISSN: 1866-7511</identifier><identifier>EISSN: 1866-7538</identifier><identifier>DOI: 10.1007/s12517-022-10693-3</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Accuracy ; Cluster analysis ; Clustering ; Continuity (mathematics) ; Earth and Environmental Science ; Earth science ; Earth Sciences ; Identification ; Identification methods ; Information processing ; Lithology ; Machine learning ; Methods ; Original Paper ; Representations ; Reservoirs ; Vector quantization</subject><ispartof>Arabian journal of geosciences, 2022-09, Vol.15 (17), Article 1462</ispartof><rights>Saudi Society for Geosciences 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a1873-5300935e313c9227bd4f8eada609594ab8d435e0f4bf2bb195fee713aa47c9743</citedby><cites>FETCH-LOGICAL-a1873-5300935e313c9227bd4f8eada609594ab8d435e0f4bf2bb195fee713aa47c9743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12517-022-10693-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12517-022-10693-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Cao, Zhimin</creatorcontrib><creatorcontrib>Yang, Can</creatorcontrib><creatorcontrib>Han, Jian</creatorcontrib><creatorcontrib>Mu, Haiwei</creatorcontrib><creatorcontrib>Wan, Chuan</creatorcontrib><creatorcontrib>Gao, Pan</creatorcontrib><title>Lithology identification method based on integrated K-means clustering and meta-object representation</title><title>Arabian journal of geosciences</title><addtitle>Arab J Geosci</addtitle><description>Aiming at the problem that the basic identification unit constructed by the existing lithology identification method cannot fully utilize the context information provided by the continuity of logging curves and the potential information in each layer segment, a lithology identification method based on integrated K-means clustering and meta-object representation is proposed. The K-means clustering method is used to automatically layer multiple conventional logging curves of the target reservoir, and the obtained layer is used to construct a meta-object for lithology identification. Specifically, in order to improve the accuracy of meta-object construction, clusters with sufficient differences are generated, and an undirected graph between different clusters is constructed to help achieve accurate layering. And then, with the obtained meta-objects, a complete meta-object representation can be constructed from both the statistical and shape perspectives. Finally, with well-represented meta-objects, popular machine learning techniques can be used for lithology identification tasks. The experimental results show that the feature representation of meta-objects obtained by the proposed ensemble K-means clustering method has a strong reservoir characterization ability. With the well-represented meta-objects, lithology identification accuracy can be significantly improved.</description><subject>Accuracy</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Continuity (mathematics)</subject><subject>Earth and Environmental Science</subject><subject>Earth science</subject><subject>Earth Sciences</subject><subject>Identification</subject><subject>Identification methods</subject><subject>Information processing</subject><subject>Lithology</subject><subject>Machine learning</subject><subject>Methods</subject><subject>Original Paper</subject><subject>Representations</subject><subject>Reservoirs</subject><subject>Vector quantization</subject><issn>1866-7511</issn><issn>1866-7538</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9UMlOwzAQtRBIlMIPcIrE2eAljuMjqthEJS5wtpx4XFy1cbDdQ_8et0Fw4zTz9JbRPISuKbmlhMi7RJmgEhPGMCWN4pifoBltmwZLwdvT353Sc3SR0pqQpiWynSFY-vwZNmG1r7yFIXvne5N9GKotFMJWnUlgq4L9kGEVTS7oFW_BDKnqN7uUIfphVZnBHhwGh24Nfa4ijBFSCTyGXaIzZzYJrn7mHH08PrwvnvHy7ellcb_EhraSY8EJUVwAp7xXjMnO1q4FY01DlFC16VpbF5q4unOs66gSDkBSbkwteyVrPkc3U-4Yw9cOUtbrsItDOamZJJIrJWpVVGxS9TGkFMHpMfqtiXtNiT7Uqac6dalTH-vUvJj4ZErj4WGIf9H_uL4BR1R5aQ</recordid><startdate>202209</startdate><enddate>202209</enddate><creator>Cao, Zhimin</creator><creator>Yang, Can</creator><creator>Han, Jian</creator><creator>Mu, Haiwei</creator><creator>Wan, Chuan</creator><creator>Gao, Pan</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>202209</creationdate><title>Lithology identification method based on integrated K-means clustering and meta-object representation</title><author>Cao, Zhimin ; Yang, Can ; Han, Jian ; Mu, Haiwei ; Wan, Chuan ; Gao, Pan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a1873-5300935e313c9227bd4f8eada609594ab8d435e0f4bf2bb195fee713aa47c9743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Continuity (mathematics)</topic><topic>Earth and Environmental Science</topic><topic>Earth science</topic><topic>Earth Sciences</topic><topic>Identification</topic><topic>Identification methods</topic><topic>Information processing</topic><topic>Lithology</topic><topic>Machine learning</topic><topic>Methods</topic><topic>Original Paper</topic><topic>Representations</topic><topic>Reservoirs</topic><topic>Vector quantization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Zhimin</creatorcontrib><creatorcontrib>Yang, Can</creatorcontrib><creatorcontrib>Han, Jian</creatorcontrib><creatorcontrib>Mu, Haiwei</creatorcontrib><creatorcontrib>Wan, Chuan</creatorcontrib><creatorcontrib>Gao, Pan</creatorcontrib><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Arabian journal of geosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Zhimin</au><au>Yang, Can</au><au>Han, Jian</au><au>Mu, Haiwei</au><au>Wan, Chuan</au><au>Gao, Pan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lithology identification method based on integrated K-means clustering and meta-object representation</atitle><jtitle>Arabian journal of geosciences</jtitle><stitle>Arab J Geosci</stitle><date>2022-09</date><risdate>2022</risdate><volume>15</volume><issue>17</issue><artnum>1462</artnum><issn>1866-7511</issn><eissn>1866-7538</eissn><abstract>Aiming at the problem that the basic identification unit constructed by the existing lithology identification method cannot fully utilize the context information provided by the continuity of logging curves and the potential information in each layer segment, a lithology identification method based on integrated K-means clustering and meta-object representation is proposed. The K-means clustering method is used to automatically layer multiple conventional logging curves of the target reservoir, and the obtained layer is used to construct a meta-object for lithology identification. Specifically, in order to improve the accuracy of meta-object construction, clusters with sufficient differences are generated, and an undirected graph between different clusters is constructed to help achieve accurate layering. And then, with the obtained meta-objects, a complete meta-object representation can be constructed from both the statistical and shape perspectives. Finally, with well-represented meta-objects, popular machine learning techniques can be used for lithology identification tasks. The experimental results show that the feature representation of meta-objects obtained by the proposed ensemble K-means clustering method has a strong reservoir characterization ability. With the well-represented meta-objects, lithology identification accuracy can be significantly improved.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s12517-022-10693-3</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1866-7511 |
ispartof | Arabian journal of geosciences, 2022-09, Vol.15 (17), Article 1462 |
issn | 1866-7511 1866-7538 |
language | eng |
recordid | cdi_proquest_journals_2707399549 |
source | Springer Nature - Complete Springer Journals |
subjects | Accuracy Cluster analysis Clustering Continuity (mathematics) Earth and Environmental Science Earth science Earth Sciences Identification Identification methods Information processing Lithology Machine learning Methods Original Paper Representations Reservoirs Vector quantization |
title | Lithology identification method based on integrated K-means clustering and meta-object representation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T10%3A29%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lithology%20identification%20method%20based%20on%20integrated%20K-means%20clustering%20and%20meta-object%20representation&rft.jtitle=Arabian%20journal%20of%20geosciences&rft.au=Cao,%20Zhimin&rft.date=2022-09&rft.volume=15&rft.issue=17&rft.artnum=1462&rft.issn=1866-7511&rft.eissn=1866-7538&rft_id=info:doi/10.1007/s12517-022-10693-3&rft_dat=%3Cproquest_cross%3E2707399549%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2707399549&rft_id=info:pmid/&rfr_iscdi=true |