Effect of PVP Assisted Growth of α-Mn2O3 Nanoparticles on the Structural, Microstructural, Magnetic and Optical Properties

Single-phase manganese oxide, α-Mn 2 O 3 , nanoparticles have been prepared successfully using different amounts of 2w/v% polyvinylpyrrolidone (PVP) via co-precipitation. The samples prepared with 1 ml, 2 ml, 5 ml and 10 ml PVP are represented as S1, S2, S3 and S4, respectively. The effect of PVP am...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electronic materials 2022-10, Vol.51 (10), p.5842-5856
Hauptverfasser: Kumari, Kavita, Kumar, Shalendra, Huh, Seok-Hwan, Kumar, Akshay, Kim, Min-Soo, Shin, Min-Ji, Devi, Nirmla, Koo, Bon-Heun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5856
container_issue 10
container_start_page 5842
container_title Journal of electronic materials
container_volume 51
creator Kumari, Kavita
Kumar, Shalendra
Huh, Seok-Hwan
Kumar, Akshay
Kim, Min-Soo
Shin, Min-Ji
Devi, Nirmla
Koo, Bon-Heun
description Single-phase manganese oxide, α-Mn 2 O 3 , nanoparticles have been prepared successfully using different amounts of 2w/v% polyvinylpyrrolidone (PVP) via co-precipitation. The samples prepared with 1 ml, 2 ml, 5 ml and 10 ml PVP are represented as S1, S2, S3 and S4, respectively. The effect of PVP amount on the structural, microstructural, magnetic and optical properties was systematically investigated. Rietveld refinement of the x-ray diffraction patterns revealed the single-phase formation of α-Mn 2 O 3 nanoparticles. The average crystallite sizes of the particles was found to be minimum for S2 with lowest lattice parameter and highest strain. High-resolution field emission scanning electron microscopy confirmed the smallest size of S2 with spherical morphology and smooth surfaces. Energy dispersive x-ray spectroscopy and maps showed uniform distribution of the elements favouring the Mn 2 O 3 composition. Raman and Fourier transform infrared spectra displayed characteristic bands corresponding to α-Mn 2 O 3 . The magnetic susceptibility revealed the antiferromagnetic nature of α-Mn 2 O 3 nanoparticles with Néel temperature, T N ~ 80.6 K for S2. The increase in PVP amount above 2 ml increased the T N as well as the magnetic frustration. The band gap was found to be maximum (1.8 eV) for S2 nanoparticles. Briefly, the smallest size nanoparticles with spherical shape and smooth surfaces were obtained for 2 ml PVP with the lowest magnetic frustration and highest band gap indicating the optimum amount of PVP to be 2 ml. Thereby, the results have revealed the limiting behaviour of polyvinylpyrrolidone chains operating during synthesis.
doi_str_mv 10.1007/s11664-022-09804-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2707266825</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2707266825</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-a3623890aaac64ee6860c8a9375b142d801bc04fe7fe66bbdb695f33c85807453</originalsourceid><addsrcrecordid>eNp9kM1KxDAUhYMoOI6-gKuAW6P5adN0OQzjKMw4A_7gLqRpMtOhtjVJEfGpfBGfydYKunJ1L4fvnMs9AJwSfEEwTi49IZxHCFOKcCpwhNgeGJE4YogI_rQPRphxgmLK4kNw5P0OYxITQUbgfWat0QHWFq4f13DifeGDyeHc1a9h28ufH2hZ0RWDt6qqG-VCoUvjYV3BsDXwLrhWh9ap8hwuC-1q_1dQm8p0PFRVDldNt6kSrl3dmC7F-GNwYFXpzcnPHIOHq9n99BotVvOb6WSBNCNpQIpxykSKlVKaR8ZwwbEWKmVJnJGI5gKTTOPImsQazrMsz3gaW8a0iAVOopiNwdmQ27j6pTU-yF3duqo7KWmCE8q5oD1FB6p_wjtjZeOKZ-XeJMGyL1kOJcuuZPldsmSdiQ0m38HVxrjf6H9cX2EegF4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2707266825</pqid></control><display><type>article</type><title>Effect of PVP Assisted Growth of α-Mn2O3 Nanoparticles on the Structural, Microstructural, Magnetic and Optical Properties</title><source>SpringerNature Journals</source><creator>Kumari, Kavita ; Kumar, Shalendra ; Huh, Seok-Hwan ; Kumar, Akshay ; Kim, Min-Soo ; Shin, Min-Ji ; Devi, Nirmla ; Koo, Bon-Heun</creator><creatorcontrib>Kumari, Kavita ; Kumar, Shalendra ; Huh, Seok-Hwan ; Kumar, Akshay ; Kim, Min-Soo ; Shin, Min-Ji ; Devi, Nirmla ; Koo, Bon-Heun</creatorcontrib><description>Single-phase manganese oxide, α-Mn 2 O 3 , nanoparticles have been prepared successfully using different amounts of 2w/v% polyvinylpyrrolidone (PVP) via co-precipitation. The samples prepared with 1 ml, 2 ml, 5 ml and 10 ml PVP are represented as S1, S2, S3 and S4, respectively. The effect of PVP amount on the structural, microstructural, magnetic and optical properties was systematically investigated. Rietveld refinement of the x-ray diffraction patterns revealed the single-phase formation of α-Mn 2 O 3 nanoparticles. The average crystallite sizes of the particles was found to be minimum for S2 with lowest lattice parameter and highest strain. High-resolution field emission scanning electron microscopy confirmed the smallest size of S2 with spherical morphology and smooth surfaces. Energy dispersive x-ray spectroscopy and maps showed uniform distribution of the elements favouring the Mn 2 O 3 composition. Raman and Fourier transform infrared spectra displayed characteristic bands corresponding to α-Mn 2 O 3 . The magnetic susceptibility revealed the antiferromagnetic nature of α-Mn 2 O 3 nanoparticles with Néel temperature, T N ~ 80.6 K for S2. The increase in PVP amount above 2 ml increased the T N as well as the magnetic frustration. The band gap was found to be maximum (1.8 eV) for S2 nanoparticles. Briefly, the smallest size nanoparticles with spherical shape and smooth surfaces were obtained for 2 ml PVP with the lowest magnetic frustration and highest band gap indicating the optimum amount of PVP to be 2 ml. Thereby, the results have revealed the limiting behaviour of polyvinylpyrrolidone chains operating during synthesis.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-022-09804-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Antiferromagnetism ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Crystallites ; Diffraction patterns ; Electronics and Microelectronics ; Energy gap ; Field emission microscopy ; Fourier transforms ; Frustrated magnetism ; Infrared spectra ; Instrumentation ; Magnetic permeability ; Magnetic properties ; Manganese oxides ; Materials Science ; Nanoparticles ; Neel temperature ; Optical and Electronic Materials ; Optical properties ; Original Research Article ; Polyvinylpyrrolidone ; Solid State Physics ; Spectrum analysis</subject><ispartof>Journal of electronic materials, 2022-10, Vol.51 (10), p.5842-5856</ispartof><rights>The Minerals, Metals &amp; Materials Society 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-a3623890aaac64ee6860c8a9375b142d801bc04fe7fe66bbdb695f33c85807453</citedby><cites>FETCH-LOGICAL-c319t-a3623890aaac64ee6860c8a9375b142d801bc04fe7fe66bbdb695f33c85807453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11664-022-09804-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11664-022-09804-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kumari, Kavita</creatorcontrib><creatorcontrib>Kumar, Shalendra</creatorcontrib><creatorcontrib>Huh, Seok-Hwan</creatorcontrib><creatorcontrib>Kumar, Akshay</creatorcontrib><creatorcontrib>Kim, Min-Soo</creatorcontrib><creatorcontrib>Shin, Min-Ji</creatorcontrib><creatorcontrib>Devi, Nirmla</creatorcontrib><creatorcontrib>Koo, Bon-Heun</creatorcontrib><title>Effect of PVP Assisted Growth of α-Mn2O3 Nanoparticles on the Structural, Microstructural, Magnetic and Optical Properties</title><title>Journal of electronic materials</title><addtitle>J. Electron. Mater</addtitle><description>Single-phase manganese oxide, α-Mn 2 O 3 , nanoparticles have been prepared successfully using different amounts of 2w/v% polyvinylpyrrolidone (PVP) via co-precipitation. The samples prepared with 1 ml, 2 ml, 5 ml and 10 ml PVP are represented as S1, S2, S3 and S4, respectively. The effect of PVP amount on the structural, microstructural, magnetic and optical properties was systematically investigated. Rietveld refinement of the x-ray diffraction patterns revealed the single-phase formation of α-Mn 2 O 3 nanoparticles. The average crystallite sizes of the particles was found to be minimum for S2 with lowest lattice parameter and highest strain. High-resolution field emission scanning electron microscopy confirmed the smallest size of S2 with spherical morphology and smooth surfaces. Energy dispersive x-ray spectroscopy and maps showed uniform distribution of the elements favouring the Mn 2 O 3 composition. Raman and Fourier transform infrared spectra displayed characteristic bands corresponding to α-Mn 2 O 3 . The magnetic susceptibility revealed the antiferromagnetic nature of α-Mn 2 O 3 nanoparticles with Néel temperature, T N ~ 80.6 K for S2. The increase in PVP amount above 2 ml increased the T N as well as the magnetic frustration. The band gap was found to be maximum (1.8 eV) for S2 nanoparticles. Briefly, the smallest size nanoparticles with spherical shape and smooth surfaces were obtained for 2 ml PVP with the lowest magnetic frustration and highest band gap indicating the optimum amount of PVP to be 2 ml. Thereby, the results have revealed the limiting behaviour of polyvinylpyrrolidone chains operating during synthesis.</description><subject>Antiferromagnetism</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Crystallites</subject><subject>Diffraction patterns</subject><subject>Electronics and Microelectronics</subject><subject>Energy gap</subject><subject>Field emission microscopy</subject><subject>Fourier transforms</subject><subject>Frustrated magnetism</subject><subject>Infrared spectra</subject><subject>Instrumentation</subject><subject>Magnetic permeability</subject><subject>Magnetic properties</subject><subject>Manganese oxides</subject><subject>Materials Science</subject><subject>Nanoparticles</subject><subject>Neel temperature</subject><subject>Optical and Electronic Materials</subject><subject>Optical properties</subject><subject>Original Research Article</subject><subject>Polyvinylpyrrolidone</subject><subject>Solid State Physics</subject><subject>Spectrum analysis</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kM1KxDAUhYMoOI6-gKuAW6P5adN0OQzjKMw4A_7gLqRpMtOhtjVJEfGpfBGfydYKunJ1L4fvnMs9AJwSfEEwTi49IZxHCFOKcCpwhNgeGJE4YogI_rQPRphxgmLK4kNw5P0OYxITQUbgfWat0QHWFq4f13DifeGDyeHc1a9h28ufH2hZ0RWDt6qqG-VCoUvjYV3BsDXwLrhWh9ap8hwuC-1q_1dQm8p0PFRVDldNt6kSrl3dmC7F-GNwYFXpzcnPHIOHq9n99BotVvOb6WSBNCNpQIpxykSKlVKaR8ZwwbEWKmVJnJGI5gKTTOPImsQazrMsz3gaW8a0iAVOopiNwdmQ27j6pTU-yF3duqo7KWmCE8q5oD1FB6p_wjtjZeOKZ-XeJMGyL1kOJcuuZPldsmSdiQ0m38HVxrjf6H9cX2EegF4</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Kumari, Kavita</creator><creator>Kumar, Shalendra</creator><creator>Huh, Seok-Hwan</creator><creator>Kumar, Akshay</creator><creator>Kim, Min-Soo</creator><creator>Shin, Min-Ji</creator><creator>Devi, Nirmla</creator><creator>Koo, Bon-Heun</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20221001</creationdate><title>Effect of PVP Assisted Growth of α-Mn2O3 Nanoparticles on the Structural, Microstructural, Magnetic and Optical Properties</title><author>Kumari, Kavita ; Kumar, Shalendra ; Huh, Seok-Hwan ; Kumar, Akshay ; Kim, Min-Soo ; Shin, Min-Ji ; Devi, Nirmla ; Koo, Bon-Heun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-a3623890aaac64ee6860c8a9375b142d801bc04fe7fe66bbdb695f33c85807453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Antiferromagnetism</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Crystallites</topic><topic>Diffraction patterns</topic><topic>Electronics and Microelectronics</topic><topic>Energy gap</topic><topic>Field emission microscopy</topic><topic>Fourier transforms</topic><topic>Frustrated magnetism</topic><topic>Infrared spectra</topic><topic>Instrumentation</topic><topic>Magnetic permeability</topic><topic>Magnetic properties</topic><topic>Manganese oxides</topic><topic>Materials Science</topic><topic>Nanoparticles</topic><topic>Neel temperature</topic><topic>Optical and Electronic Materials</topic><topic>Optical properties</topic><topic>Original Research Article</topic><topic>Polyvinylpyrrolidone</topic><topic>Solid State Physics</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumari, Kavita</creatorcontrib><creatorcontrib>Kumar, Shalendra</creatorcontrib><creatorcontrib>Huh, Seok-Hwan</creatorcontrib><creatorcontrib>Kumar, Akshay</creatorcontrib><creatorcontrib>Kim, Min-Soo</creatorcontrib><creatorcontrib>Shin, Min-Ji</creatorcontrib><creatorcontrib>Devi, Nirmla</creatorcontrib><creatorcontrib>Koo, Bon-Heun</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumari, Kavita</au><au>Kumar, Shalendra</au><au>Huh, Seok-Hwan</au><au>Kumar, Akshay</au><au>Kim, Min-Soo</au><au>Shin, Min-Ji</au><au>Devi, Nirmla</au><au>Koo, Bon-Heun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of PVP Assisted Growth of α-Mn2O3 Nanoparticles on the Structural, Microstructural, Magnetic and Optical Properties</atitle><jtitle>Journal of electronic materials</jtitle><stitle>J. Electron. Mater</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>51</volume><issue>10</issue><spage>5842</spage><epage>5856</epage><pages>5842-5856</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>Single-phase manganese oxide, α-Mn 2 O 3 , nanoparticles have been prepared successfully using different amounts of 2w/v% polyvinylpyrrolidone (PVP) via co-precipitation. The samples prepared with 1 ml, 2 ml, 5 ml and 10 ml PVP are represented as S1, S2, S3 and S4, respectively. The effect of PVP amount on the structural, microstructural, magnetic and optical properties was systematically investigated. Rietveld refinement of the x-ray diffraction patterns revealed the single-phase formation of α-Mn 2 O 3 nanoparticles. The average crystallite sizes of the particles was found to be minimum for S2 with lowest lattice parameter and highest strain. High-resolution field emission scanning electron microscopy confirmed the smallest size of S2 with spherical morphology and smooth surfaces. Energy dispersive x-ray spectroscopy and maps showed uniform distribution of the elements favouring the Mn 2 O 3 composition. Raman and Fourier transform infrared spectra displayed characteristic bands corresponding to α-Mn 2 O 3 . The magnetic susceptibility revealed the antiferromagnetic nature of α-Mn 2 O 3 nanoparticles with Néel temperature, T N ~ 80.6 K for S2. The increase in PVP amount above 2 ml increased the T N as well as the magnetic frustration. The band gap was found to be maximum (1.8 eV) for S2 nanoparticles. Briefly, the smallest size nanoparticles with spherical shape and smooth surfaces were obtained for 2 ml PVP with the lowest magnetic frustration and highest band gap indicating the optimum amount of PVP to be 2 ml. Thereby, the results have revealed the limiting behaviour of polyvinylpyrrolidone chains operating during synthesis.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-022-09804-3</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0361-5235
ispartof Journal of electronic materials, 2022-10, Vol.51 (10), p.5842-5856
issn 0361-5235
1543-186X
language eng
recordid cdi_proquest_journals_2707266825
source SpringerNature Journals
subjects Antiferromagnetism
Characterization and Evaluation of Materials
Chemistry and Materials Science
Crystallites
Diffraction patterns
Electronics and Microelectronics
Energy gap
Field emission microscopy
Fourier transforms
Frustrated magnetism
Infrared spectra
Instrumentation
Magnetic permeability
Magnetic properties
Manganese oxides
Materials Science
Nanoparticles
Neel temperature
Optical and Electronic Materials
Optical properties
Original Research Article
Polyvinylpyrrolidone
Solid State Physics
Spectrum analysis
title Effect of PVP Assisted Growth of α-Mn2O3 Nanoparticles on the Structural, Microstructural, Magnetic and Optical Properties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T11%3A22%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20PVP%20Assisted%20Growth%20of%20%CE%B1-Mn2O3%20Nanoparticles%20on%20the%20Structural,%20Microstructural,%20Magnetic%20and%20Optical%20Properties&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Kumari,%20Kavita&rft.date=2022-10-01&rft.volume=51&rft.issue=10&rft.spage=5842&rft.epage=5856&rft.pages=5842-5856&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-022-09804-3&rft_dat=%3Cproquest_cross%3E2707266825%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2707266825&rft_id=info:pmid/&rfr_iscdi=true