Periodic two-cluster synchronization modes in fully coupled networks of nonlinear oscillators
We consider special systems of ordinary differential equations, the so-called fully coupled networks of nonlinear oscillators. For a given class of systems, we propose methods that allow examining problems of the existence and stability of periodic two-cluster synchronization modes. For any of these...
Gespeichert in:
Veröffentlicht in: | Theoretical and mathematical physics 2022-08, Vol.212 (2), p.1073-1091 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1091 |
---|---|
container_issue | 2 |
container_start_page | 1073 |
container_title | Theoretical and mathematical physics |
container_volume | 212 |
creator | Glyzin, S. D. Kolesov, A. Yu |
description | We consider special systems of ordinary differential equations, the so-called fully coupled networks of nonlinear oscillators. For a given class of systems, we propose methods that allow examining problems of the existence and stability of periodic two-cluster synchronization modes. For any of these modes, the set of oscillators falls into two disjoint classes. Within these classes, complete synchronization of oscillations is observed, and every two oscillators from different classes oscillate asynchronously. |
doi_str_mv | 10.1134/S0040577922080049 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2707227970</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2707227970</sourcerecordid><originalsourceid>FETCH-LOGICAL-c198t-ce0440f9726fde1197068385ac2f009c5ac175ab65e43641a18af4f4f320f2bf3</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKs_wF3A9ejNYyaTpRRfUFBQlzKkmURT06QmM0j99aZUcCFyF_fCOd-5cBA6JXBOCOMXjwAcaiEkpdCWW-6hCakFqyRjbB9NtnK11Q_RUc5LAALQkgl6eTDJxd5pPHzGSvsxDybhvAn6LcXgvtTgYsCr2JuMXcB29H6DdRzX3vQ4mAKl94yjxSEG74JRCcesnfdqiCkfowOrfDYnP3uKnq-vnma31fz-5m52Oa80ke1QaQOcg5WCNrY3hEgBTcvaWmlqAaQuBxG1WjS14azhRJFWWV6GUbB0YdkUne1y1yl-jCYP3TKOKZSXHRUgKBUlsrjIzqVTzDkZ262TW6m06Qh02xa7Py0Whu6YXLzh1aTf5P-hbwkhdRw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2707227970</pqid></control><display><type>article</type><title>Periodic two-cluster synchronization modes in fully coupled networks of nonlinear oscillators</title><source>SpringerLink Journals</source><creator>Glyzin, S. D. ; Kolesov, A. Yu</creator><creatorcontrib>Glyzin, S. D. ; Kolesov, A. Yu</creatorcontrib><description>We consider special systems of ordinary differential equations, the so-called fully coupled networks of nonlinear oscillators. For a given class of systems, we propose methods that allow examining problems of the existence and stability of periodic two-cluster synchronization modes. For any of these modes, the set of oscillators falls into two disjoint classes. Within these classes, complete synchronization of oscillations is observed, and every two oscillators from different classes oscillate asynchronously.</description><identifier>ISSN: 0040-5779</identifier><identifier>EISSN: 1573-9333</identifier><identifier>DOI: 10.1134/S0040577922080049</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>14/34 ; 639/766/189 ; 639/766/530 ; 639/766/747 ; Applications of Mathematics ; Clusters ; Coupled modes ; Differential equations ; Mathematical and Computational Physics ; Oscillators ; Physics ; Physics and Astronomy ; Synchronism ; Theoretical</subject><ispartof>Theoretical and mathematical physics, 2022-08, Vol.212 (2), p.1073-1091</ispartof><rights>Pleiades Publishing, Ltd. 2022</rights><rights>Pleiades Publishing, Ltd. 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c198t-ce0440f9726fde1197068385ac2f009c5ac175ab65e43641a18af4f4f320f2bf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0040577922080049$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0040577922080049$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Glyzin, S. D.</creatorcontrib><creatorcontrib>Kolesov, A. Yu</creatorcontrib><title>Periodic two-cluster synchronization modes in fully coupled networks of nonlinear oscillators</title><title>Theoretical and mathematical physics</title><addtitle>Theor Math Phys</addtitle><description>We consider special systems of ordinary differential equations, the so-called fully coupled networks of nonlinear oscillators. For a given class of systems, we propose methods that allow examining problems of the existence and stability of periodic two-cluster synchronization modes. For any of these modes, the set of oscillators falls into two disjoint classes. Within these classes, complete synchronization of oscillations is observed, and every two oscillators from different classes oscillate asynchronously.</description><subject>14/34</subject><subject>639/766/189</subject><subject>639/766/530</subject><subject>639/766/747</subject><subject>Applications of Mathematics</subject><subject>Clusters</subject><subject>Coupled modes</subject><subject>Differential equations</subject><subject>Mathematical and Computational Physics</subject><subject>Oscillators</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Synchronism</subject><subject>Theoretical</subject><issn>0040-5779</issn><issn>1573-9333</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEUhYMoWKs_wF3A9ejNYyaTpRRfUFBQlzKkmURT06QmM0j99aZUcCFyF_fCOd-5cBA6JXBOCOMXjwAcaiEkpdCWW-6hCakFqyRjbB9NtnK11Q_RUc5LAALQkgl6eTDJxd5pPHzGSvsxDybhvAn6LcXgvtTgYsCr2JuMXcB29H6DdRzX3vQ4mAKl94yjxSEG74JRCcesnfdqiCkfowOrfDYnP3uKnq-vnma31fz-5m52Oa80ke1QaQOcg5WCNrY3hEgBTcvaWmlqAaQuBxG1WjS14azhRJFWWV6GUbB0YdkUne1y1yl-jCYP3TKOKZSXHRUgKBUlsrjIzqVTzDkZ262TW6m06Qh02xa7Py0Whu6YXLzh1aTf5P-hbwkhdRw</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Glyzin, S. D.</creator><creator>Kolesov, A. Yu</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220801</creationdate><title>Periodic two-cluster synchronization modes in fully coupled networks of nonlinear oscillators</title><author>Glyzin, S. D. ; Kolesov, A. Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c198t-ce0440f9726fde1197068385ac2f009c5ac175ab65e43641a18af4f4f320f2bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>14/34</topic><topic>639/766/189</topic><topic>639/766/530</topic><topic>639/766/747</topic><topic>Applications of Mathematics</topic><topic>Clusters</topic><topic>Coupled modes</topic><topic>Differential equations</topic><topic>Mathematical and Computational Physics</topic><topic>Oscillators</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Synchronism</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Glyzin, S. D.</creatorcontrib><creatorcontrib>Kolesov, A. Yu</creatorcontrib><collection>CrossRef</collection><jtitle>Theoretical and mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Glyzin, S. D.</au><au>Kolesov, A. Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Periodic two-cluster synchronization modes in fully coupled networks of nonlinear oscillators</atitle><jtitle>Theoretical and mathematical physics</jtitle><stitle>Theor Math Phys</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>212</volume><issue>2</issue><spage>1073</spage><epage>1091</epage><pages>1073-1091</pages><issn>0040-5779</issn><eissn>1573-9333</eissn><abstract>We consider special systems of ordinary differential equations, the so-called fully coupled networks of nonlinear oscillators. For a given class of systems, we propose methods that allow examining problems of the existence and stability of periodic two-cluster synchronization modes. For any of these modes, the set of oscillators falls into two disjoint classes. Within these classes, complete synchronization of oscillations is observed, and every two oscillators from different classes oscillate asynchronously.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0040577922080049</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0040-5779 |
ispartof | Theoretical and mathematical physics, 2022-08, Vol.212 (2), p.1073-1091 |
issn | 0040-5779 1573-9333 |
language | eng |
recordid | cdi_proquest_journals_2707227970 |
source | SpringerLink Journals |
subjects | 14/34 639/766/189 639/766/530 639/766/747 Applications of Mathematics Clusters Coupled modes Differential equations Mathematical and Computational Physics Oscillators Physics Physics and Astronomy Synchronism Theoretical |
title | Periodic two-cluster synchronization modes in fully coupled networks of nonlinear oscillators |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T01%3A37%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Periodic%20two-cluster%20synchronization%20modes%20in%20fully%20coupled%20networks%20of%20nonlinear%20oscillators&rft.jtitle=Theoretical%20and%20mathematical%20physics&rft.au=Glyzin,%20S.%20D.&rft.date=2022-08-01&rft.volume=212&rft.issue=2&rft.spage=1073&rft.epage=1091&rft.pages=1073-1091&rft.issn=0040-5779&rft.eissn=1573-9333&rft_id=info:doi/10.1134/S0040577922080049&rft_dat=%3Cproquest_cross%3E2707227970%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2707227970&rft_id=info:pmid/&rfr_iscdi=true |