Periodic two-cluster synchronization modes in fully coupled networks of nonlinear oscillators

We consider special systems of ordinary differential equations, the so-called fully coupled networks of nonlinear oscillators. For a given class of systems, we propose methods that allow examining problems of the existence and stability of periodic two-cluster synchronization modes. For any of these...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical and mathematical physics 2022-08, Vol.212 (2), p.1073-1091
Hauptverfasser: Glyzin, S. D., Kolesov, A. Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1091
container_issue 2
container_start_page 1073
container_title Theoretical and mathematical physics
container_volume 212
creator Glyzin, S. D.
Kolesov, A. Yu
description We consider special systems of ordinary differential equations, the so-called fully coupled networks of nonlinear oscillators. For a given class of systems, we propose methods that allow examining problems of the existence and stability of periodic two-cluster synchronization modes. For any of these modes, the set of oscillators falls into two disjoint classes. Within these classes, complete synchronization of oscillations is observed, and every two oscillators from different classes oscillate asynchronously.
doi_str_mv 10.1134/S0040577922080049
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2707227970</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2707227970</sourcerecordid><originalsourceid>FETCH-LOGICAL-c198t-ce0440f9726fde1197068385ac2f009c5ac175ab65e43641a18af4f4f320f2bf3</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKs_wF3A9ejNYyaTpRRfUFBQlzKkmURT06QmM0j99aZUcCFyF_fCOd-5cBA6JXBOCOMXjwAcaiEkpdCWW-6hCakFqyRjbB9NtnK11Q_RUc5LAALQkgl6eTDJxd5pPHzGSvsxDybhvAn6LcXgvtTgYsCr2JuMXcB29H6DdRzX3vQ4mAKl94yjxSEG74JRCcesnfdqiCkfowOrfDYnP3uKnq-vnma31fz-5m52Oa80ke1QaQOcg5WCNrY3hEgBTcvaWmlqAaQuBxG1WjS14azhRJFWWV6GUbB0YdkUne1y1yl-jCYP3TKOKZSXHRUgKBUlsrjIzqVTzDkZ262TW6m06Qh02xa7Py0Whu6YXLzh1aTf5P-hbwkhdRw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2707227970</pqid></control><display><type>article</type><title>Periodic two-cluster synchronization modes in fully coupled networks of nonlinear oscillators</title><source>SpringerLink Journals</source><creator>Glyzin, S. D. ; Kolesov, A. Yu</creator><creatorcontrib>Glyzin, S. D. ; Kolesov, A. Yu</creatorcontrib><description>We consider special systems of ordinary differential equations, the so-called fully coupled networks of nonlinear oscillators. For a given class of systems, we propose methods that allow examining problems of the existence and stability of periodic two-cluster synchronization modes. For any of these modes, the set of oscillators falls into two disjoint classes. Within these classes, complete synchronization of oscillations is observed, and every two oscillators from different classes oscillate asynchronously.</description><identifier>ISSN: 0040-5779</identifier><identifier>EISSN: 1573-9333</identifier><identifier>DOI: 10.1134/S0040577922080049</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>14/34 ; 639/766/189 ; 639/766/530 ; 639/766/747 ; Applications of Mathematics ; Clusters ; Coupled modes ; Differential equations ; Mathematical and Computational Physics ; Oscillators ; Physics ; Physics and Astronomy ; Synchronism ; Theoretical</subject><ispartof>Theoretical and mathematical physics, 2022-08, Vol.212 (2), p.1073-1091</ispartof><rights>Pleiades Publishing, Ltd. 2022</rights><rights>Pleiades Publishing, Ltd. 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c198t-ce0440f9726fde1197068385ac2f009c5ac175ab65e43641a18af4f4f320f2bf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0040577922080049$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0040577922080049$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Glyzin, S. D.</creatorcontrib><creatorcontrib>Kolesov, A. Yu</creatorcontrib><title>Periodic two-cluster synchronization modes in fully coupled networks of nonlinear oscillators</title><title>Theoretical and mathematical physics</title><addtitle>Theor Math Phys</addtitle><description>We consider special systems of ordinary differential equations, the so-called fully coupled networks of nonlinear oscillators. For a given class of systems, we propose methods that allow examining problems of the existence and stability of periodic two-cluster synchronization modes. For any of these modes, the set of oscillators falls into two disjoint classes. Within these classes, complete synchronization of oscillations is observed, and every two oscillators from different classes oscillate asynchronously.</description><subject>14/34</subject><subject>639/766/189</subject><subject>639/766/530</subject><subject>639/766/747</subject><subject>Applications of Mathematics</subject><subject>Clusters</subject><subject>Coupled modes</subject><subject>Differential equations</subject><subject>Mathematical and Computational Physics</subject><subject>Oscillators</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Synchronism</subject><subject>Theoretical</subject><issn>0040-5779</issn><issn>1573-9333</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEUhYMoWKs_wF3A9ejNYyaTpRRfUFBQlzKkmURT06QmM0j99aZUcCFyF_fCOd-5cBA6JXBOCOMXjwAcaiEkpdCWW-6hCakFqyRjbB9NtnK11Q_RUc5LAALQkgl6eTDJxd5pPHzGSvsxDybhvAn6LcXgvtTgYsCr2JuMXcB29H6DdRzX3vQ4mAKl94yjxSEG74JRCcesnfdqiCkfowOrfDYnP3uKnq-vnma31fz-5m52Oa80ke1QaQOcg5WCNrY3hEgBTcvaWmlqAaQuBxG1WjS14azhRJFWWV6GUbB0YdkUne1y1yl-jCYP3TKOKZSXHRUgKBUlsrjIzqVTzDkZ262TW6m06Qh02xa7Py0Whu6YXLzh1aTf5P-hbwkhdRw</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Glyzin, S. D.</creator><creator>Kolesov, A. Yu</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220801</creationdate><title>Periodic two-cluster synchronization modes in fully coupled networks of nonlinear oscillators</title><author>Glyzin, S. D. ; Kolesov, A. Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c198t-ce0440f9726fde1197068385ac2f009c5ac175ab65e43641a18af4f4f320f2bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>14/34</topic><topic>639/766/189</topic><topic>639/766/530</topic><topic>639/766/747</topic><topic>Applications of Mathematics</topic><topic>Clusters</topic><topic>Coupled modes</topic><topic>Differential equations</topic><topic>Mathematical and Computational Physics</topic><topic>Oscillators</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Synchronism</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Glyzin, S. D.</creatorcontrib><creatorcontrib>Kolesov, A. Yu</creatorcontrib><collection>CrossRef</collection><jtitle>Theoretical and mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Glyzin, S. D.</au><au>Kolesov, A. Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Periodic two-cluster synchronization modes in fully coupled networks of nonlinear oscillators</atitle><jtitle>Theoretical and mathematical physics</jtitle><stitle>Theor Math Phys</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>212</volume><issue>2</issue><spage>1073</spage><epage>1091</epage><pages>1073-1091</pages><issn>0040-5779</issn><eissn>1573-9333</eissn><abstract>We consider special systems of ordinary differential equations, the so-called fully coupled networks of nonlinear oscillators. For a given class of systems, we propose methods that allow examining problems of the existence and stability of periodic two-cluster synchronization modes. For any of these modes, the set of oscillators falls into two disjoint classes. Within these classes, complete synchronization of oscillations is observed, and every two oscillators from different classes oscillate asynchronously.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0040577922080049</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0040-5779
ispartof Theoretical and mathematical physics, 2022-08, Vol.212 (2), p.1073-1091
issn 0040-5779
1573-9333
language eng
recordid cdi_proquest_journals_2707227970
source SpringerLink Journals
subjects 14/34
639/766/189
639/766/530
639/766/747
Applications of Mathematics
Clusters
Coupled modes
Differential equations
Mathematical and Computational Physics
Oscillators
Physics
Physics and Astronomy
Synchronism
Theoretical
title Periodic two-cluster synchronization modes in fully coupled networks of nonlinear oscillators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T01%3A37%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Periodic%20two-cluster%20synchronization%20modes%20in%20fully%20coupled%20networks%20of%20nonlinear%20oscillators&rft.jtitle=Theoretical%20and%20mathematical%20physics&rft.au=Glyzin,%20S.%20D.&rft.date=2022-08-01&rft.volume=212&rft.issue=2&rft.spage=1073&rft.epage=1091&rft.pages=1073-1091&rft.issn=0040-5779&rft.eissn=1573-9333&rft_id=info:doi/10.1134/S0040577922080049&rft_dat=%3Cproquest_cross%3E2707227970%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2707227970&rft_id=info:pmid/&rfr_iscdi=true