Design study for a 500 MeV positron beam at the Mainz Microtron MAMI

A design study has been performed for a positron beam with an energy of 500 MeV to be realized at the applied physics area of the Mainz Microtron MAMI. Positrons will be created after pair conversion of bremsstrahlung, produced by the 855 MeV electron beam at MAMI in a tungsten converter target. Fro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. D, Atomic, molecular, and optical physics Atomic, molecular, and optical physics, 2022-08, Vol.76 (8), Article 150
Hauptverfasser: Backe, H., Lauth, W., Drexler, P., Heil, P., Klag, P., Ledroit, B., Stieler, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page
container_title The European physical journal. D, Atomic, molecular, and optical physics
container_volume 76
creator Backe, H.
Lauth, W.
Drexler, P.
Heil, P.
Klag, P.
Ledroit, B.
Stieler, F.
description A design study has been performed for a positron beam with an energy of 500 MeV to be realized at the applied physics area of the Mainz Microtron MAMI. Positrons will be created after pair conversion of bremsstrahlung, produced by the 855 MeV electron beam at MAMI in a tungsten converter target. From the two conceivable geometries (1) pair conversion in the bremsstrahlung converter target itself, and (2) bremsstrahlung pair conversion in a separated lead foil, the former was considered in detail. Positrons will be energy selected within an outside open electron beam-line bending magnet, and bent back by an additional sector magnet. Magnetic focusing elements in between are designed to prepare in a well shielded positron target chamber about 6 m away from the target a beam with horizontal and vertical emittances of ϵ v = 0.055 π mm mrad (1 σ ), and ϵ h = 0.12 π mm mrad (1 σ ), respectively, for a 10 μ m thick amorphous tungsten target and negligible momentum spread. At an accepted positron band width of 1 MeV, spots are expected vertically with an angular spread of 0.064 mrad and a size of 5.0 mm (FWHM), and horizontally with an angular spread of 0.64 mrad and a size of 7.7 mm (FWHM). The positron yield amounts to 13.1 per second, 1 MeV positron energy band width, and 1 nA electron beam current. Graphic abstract
doi_str_mv 10.1140/epjd/s10053-022-00465-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2707227934</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2707227934</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-9a30f6293349b1c47ef360503fd7e8ebadb90b8f0a67fa7d3b38eecb0fb454ed3</originalsourceid><addsrcrecordid>eNqFkE1PwzAMhiMEEmPwG4jEucxN0qQ5Thsfk6i4ANcoaZ3RibUl6Q7j19OtCI6cbMnvY1sPIdcp3KapgBl2m2oWU4CMJ8BYAiBklugTMkkFF4kEpU9_ewnn5CLGDQCwTMgJWS4x1uuGxn5X7alvA7U0A6AFvtGujXUf2oY6tFtqe9q_Iy1s3XzRoi5De5wV82J1Sc68_Yh49VOn5PX-7mXxmDw9P6wW86ek5DnvE205eMk050K7tBQKPZeQAfeVwhydrZwGl3uwUnmrKu54jlg68E5kAis-JTfj3i60nzuMvdm0u9AMJw1ToBhTmoshpcbU8GKMAb3pQr21YW9SMAdl5qDMjMrMoMwclRk9kPlIxoFo1hj-9v-HfgMz33D3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2707227934</pqid></control><display><type>article</type><title>Design study for a 500 MeV positron beam at the Mainz Microtron MAMI</title><source>SpringerLink Journals</source><creator>Backe, H. ; Lauth, W. ; Drexler, P. ; Heil, P. ; Klag, P. ; Ledroit, B. ; Stieler, F.</creator><creatorcontrib>Backe, H. ; Lauth, W. ; Drexler, P. ; Heil, P. ; Klag, P. ; Ledroit, B. ; Stieler, F.</creatorcontrib><description>A design study has been performed for a positron beam with an energy of 500 MeV to be realized at the applied physics area of the Mainz Microtron MAMI. Positrons will be created after pair conversion of bremsstrahlung, produced by the 855 MeV electron beam at MAMI in a tungsten converter target. From the two conceivable geometries (1) pair conversion in the bremsstrahlung converter target itself, and (2) bremsstrahlung pair conversion in a separated lead foil, the former was considered in detail. Positrons will be energy selected within an outside open electron beam-line bending magnet, and bent back by an additional sector magnet. Magnetic focusing elements in between are designed to prepare in a well shielded positron target chamber about 6 m away from the target a beam with horizontal and vertical emittances of ϵ v = 0.055 π mm mrad (1 σ ), and ϵ h = 0.12 π mm mrad (1 σ ), respectively, for a 10 μ m thick amorphous tungsten target and negligible momentum spread. At an accepted positron band width of 1 MeV, spots are expected vertically with an angular spread of 0.064 mrad and a size of 5.0 mm (FWHM), and horizontally with an angular spread of 0.64 mrad and a size of 7.7 mm (FWHM). The positron yield amounts to 13.1 per second, 1 MeV positron energy band width, and 1 nA electron beam current. Graphic abstract</description><identifier>ISSN: 1434-6060</identifier><identifier>EISSN: 1434-6079</identifier><identifier>DOI: 10.1140/epjd/s10053-022-00465-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applications of Nonlinear Dynamics and Chaos Theory ; Atomic ; Bremsstrahlung ; Conversion ; Dynamics of Systems on the Nanoscale ; Electron beams ; Energy bands ; Foils ; Molecular ; Optical and Plasma Physics ; Physical Chemistry ; Physics ; Physics and Astronomy ; Positron beams ; Positrons ; Quantum Information Technology ; Quantum Physics ; Regular Article – Atomic and Molecular Collisions ; Spectroscopy/Spectrometry ; Spintronics ; Tungsten</subject><ispartof>The European physical journal. D, Atomic, molecular, and optical physics, 2022-08, Vol.76 (8), Article 150</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-9a30f6293349b1c47ef360503fd7e8ebadb90b8f0a67fa7d3b38eecb0fb454ed3</citedby><cites>FETCH-LOGICAL-c383t-9a30f6293349b1c47ef360503fd7e8ebadb90b8f0a67fa7d3b38eecb0fb454ed3</cites><orcidid>0000-0001-5935-4047</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjd/s10053-022-00465-9$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1140/epjd/s10053-022-00465-9$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Backe, H.</creatorcontrib><creatorcontrib>Lauth, W.</creatorcontrib><creatorcontrib>Drexler, P.</creatorcontrib><creatorcontrib>Heil, P.</creatorcontrib><creatorcontrib>Klag, P.</creatorcontrib><creatorcontrib>Ledroit, B.</creatorcontrib><creatorcontrib>Stieler, F.</creatorcontrib><title>Design study for a 500 MeV positron beam at the Mainz Microtron MAMI</title><title>The European physical journal. D, Atomic, molecular, and optical physics</title><addtitle>Eur. Phys. J. D</addtitle><description>A design study has been performed for a positron beam with an energy of 500 MeV to be realized at the applied physics area of the Mainz Microtron MAMI. Positrons will be created after pair conversion of bremsstrahlung, produced by the 855 MeV electron beam at MAMI in a tungsten converter target. From the two conceivable geometries (1) pair conversion in the bremsstrahlung converter target itself, and (2) bremsstrahlung pair conversion in a separated lead foil, the former was considered in detail. Positrons will be energy selected within an outside open electron beam-line bending magnet, and bent back by an additional sector magnet. Magnetic focusing elements in between are designed to prepare in a well shielded positron target chamber about 6 m away from the target a beam with horizontal and vertical emittances of ϵ v = 0.055 π mm mrad (1 σ ), and ϵ h = 0.12 π mm mrad (1 σ ), respectively, for a 10 μ m thick amorphous tungsten target and negligible momentum spread. At an accepted positron band width of 1 MeV, spots are expected vertically with an angular spread of 0.064 mrad and a size of 5.0 mm (FWHM), and horizontally with an angular spread of 0.64 mrad and a size of 7.7 mm (FWHM). The positron yield amounts to 13.1 per second, 1 MeV positron energy band width, and 1 nA electron beam current. Graphic abstract</description><subject>Applications of Nonlinear Dynamics and Chaos Theory</subject><subject>Atomic</subject><subject>Bremsstrahlung</subject><subject>Conversion</subject><subject>Dynamics of Systems on the Nanoscale</subject><subject>Electron beams</subject><subject>Energy bands</subject><subject>Foils</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Positron beams</subject><subject>Positrons</subject><subject>Quantum Information Technology</subject><subject>Quantum Physics</subject><subject>Regular Article – Atomic and Molecular Collisions</subject><subject>Spectroscopy/Spectrometry</subject><subject>Spintronics</subject><subject>Tungsten</subject><issn>1434-6060</issn><issn>1434-6079</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNqFkE1PwzAMhiMEEmPwG4jEucxN0qQ5Thsfk6i4ANcoaZ3RibUl6Q7j19OtCI6cbMnvY1sPIdcp3KapgBl2m2oWU4CMJ8BYAiBklugTMkkFF4kEpU9_ewnn5CLGDQCwTMgJWS4x1uuGxn5X7alvA7U0A6AFvtGujXUf2oY6tFtqe9q_Iy1s3XzRoi5De5wV82J1Sc68_Yh49VOn5PX-7mXxmDw9P6wW86ek5DnvE205eMk050K7tBQKPZeQAfeVwhydrZwGl3uwUnmrKu54jlg68E5kAis-JTfj3i60nzuMvdm0u9AMJw1ToBhTmoshpcbU8GKMAb3pQr21YW9SMAdl5qDMjMrMoMwclRk9kPlIxoFo1hj-9v-HfgMz33D3</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Backe, H.</creator><creator>Lauth, W.</creator><creator>Drexler, P.</creator><creator>Heil, P.</creator><creator>Klag, P.</creator><creator>Ledroit, B.</creator><creator>Stieler, F.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5935-4047</orcidid></search><sort><creationdate>20220801</creationdate><title>Design study for a 500 MeV positron beam at the Mainz Microtron MAMI</title><author>Backe, H. ; Lauth, W. ; Drexler, P. ; Heil, P. ; Klag, P. ; Ledroit, B. ; Stieler, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-9a30f6293349b1c47ef360503fd7e8ebadb90b8f0a67fa7d3b38eecb0fb454ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applications of Nonlinear Dynamics and Chaos Theory</topic><topic>Atomic</topic><topic>Bremsstrahlung</topic><topic>Conversion</topic><topic>Dynamics of Systems on the Nanoscale</topic><topic>Electron beams</topic><topic>Energy bands</topic><topic>Foils</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Positron beams</topic><topic>Positrons</topic><topic>Quantum Information Technology</topic><topic>Quantum Physics</topic><topic>Regular Article – Atomic and Molecular Collisions</topic><topic>Spectroscopy/Spectrometry</topic><topic>Spintronics</topic><topic>Tungsten</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Backe, H.</creatorcontrib><creatorcontrib>Lauth, W.</creatorcontrib><creatorcontrib>Drexler, P.</creatorcontrib><creatorcontrib>Heil, P.</creatorcontrib><creatorcontrib>Klag, P.</creatorcontrib><creatorcontrib>Ledroit, B.</creatorcontrib><creatorcontrib>Stieler, F.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>The European physical journal. D, Atomic, molecular, and optical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Backe, H.</au><au>Lauth, W.</au><au>Drexler, P.</au><au>Heil, P.</au><au>Klag, P.</au><au>Ledroit, B.</au><au>Stieler, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design study for a 500 MeV positron beam at the Mainz Microtron MAMI</atitle><jtitle>The European physical journal. D, Atomic, molecular, and optical physics</jtitle><stitle>Eur. Phys. J. D</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>76</volume><issue>8</issue><artnum>150</artnum><issn>1434-6060</issn><eissn>1434-6079</eissn><abstract>A design study has been performed for a positron beam with an energy of 500 MeV to be realized at the applied physics area of the Mainz Microtron MAMI. Positrons will be created after pair conversion of bremsstrahlung, produced by the 855 MeV electron beam at MAMI in a tungsten converter target. From the two conceivable geometries (1) pair conversion in the bremsstrahlung converter target itself, and (2) bremsstrahlung pair conversion in a separated lead foil, the former was considered in detail. Positrons will be energy selected within an outside open electron beam-line bending magnet, and bent back by an additional sector magnet. Magnetic focusing elements in between are designed to prepare in a well shielded positron target chamber about 6 m away from the target a beam with horizontal and vertical emittances of ϵ v = 0.055 π mm mrad (1 σ ), and ϵ h = 0.12 π mm mrad (1 σ ), respectively, for a 10 μ m thick amorphous tungsten target and negligible momentum spread. At an accepted positron band width of 1 MeV, spots are expected vertically with an angular spread of 0.064 mrad and a size of 5.0 mm (FWHM), and horizontally with an angular spread of 0.64 mrad and a size of 7.7 mm (FWHM). The positron yield amounts to 13.1 per second, 1 MeV positron energy band width, and 1 nA electron beam current. Graphic abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjd/s10053-022-00465-9</doi><orcidid>https://orcid.org/0000-0001-5935-4047</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1434-6060
ispartof The European physical journal. D, Atomic, molecular, and optical physics, 2022-08, Vol.76 (8), Article 150
issn 1434-6060
1434-6079
language eng
recordid cdi_proquest_journals_2707227934
source SpringerLink Journals
subjects Applications of Nonlinear Dynamics and Chaos Theory
Atomic
Bremsstrahlung
Conversion
Dynamics of Systems on the Nanoscale
Electron beams
Energy bands
Foils
Molecular
Optical and Plasma Physics
Physical Chemistry
Physics
Physics and Astronomy
Positron beams
Positrons
Quantum Information Technology
Quantum Physics
Regular Article – Atomic and Molecular Collisions
Spectroscopy/Spectrometry
Spintronics
Tungsten
title Design study for a 500 MeV positron beam at the Mainz Microtron MAMI
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T05%3A27%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20study%20for%20a%20500%20MeV%20positron%20beam%20at%20the%20Mainz%20Microtron%20MAMI&rft.jtitle=The%20European%20physical%20journal.%20D,%20Atomic,%20molecular,%20and%20optical%20physics&rft.au=Backe,%20H.&rft.date=2022-08-01&rft.volume=76&rft.issue=8&rft.artnum=150&rft.issn=1434-6060&rft.eissn=1434-6079&rft_id=info:doi/10.1140/epjd/s10053-022-00465-9&rft_dat=%3Cproquest_cross%3E2707227934%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2707227934&rft_id=info:pmid/&rfr_iscdi=true