Extending NMR Tortuosity Measurements to Paramagnetic Catalyst Materials Through the Use of Low Field NMR
Pulsed Field Gradient (PFG) NMR is recognised as an analytical technique used to characterise the tortuosity of porous media by measurement of the self‐diffusion coefficient of a fluid contained within the pore space of the material of interest. Such measurements are usually performed on high magnet...
Gespeichert in:
Veröffentlicht in: | Chemistry - Methods 2022-08, Vol.2 (8), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 8 |
container_start_page | |
container_title | Chemistry - Methods |
container_volume | 2 |
creator | Ward‐Williams, Jordan A. Karsten, Vivian Guédon, Constant M. Baart, Timothy A. Munnik, Peter Sederman, Andrew J. Mantle, Mick D. Zheng, Qingyuan Gladden, Lynn F. |
description | Pulsed Field Gradient (PFG) NMR is recognised as an analytical technique used to characterise the tortuosity of porous media by measurement of the self‐diffusion coefficient of a fluid contained within the pore space of the material of interest. Such measurements are usually performed on high magnetic field NMR hardware (>300 MHz). However, many materials of interest, in particular heterogeneous catalysts, contain significant amounts of paramagnetic species, which make such measurements impossible due to their characteristic short spin‐spin relaxation times. Here it is demonstrated that by performing PFG NMR measurements on a low field magnet (2 MHz), tortuosity measurements can be obtained for a range of titania (TiO2) based carriers and catalyst precursors containing paramagnetic species up to a 20 wt.% loading. The approach is also used to compare the tortuosity of two catalyst precursors of the same metal loading prepared by different methods.
Low field Pulsed Field Gradient (PFG) NMR is demonstrated as an effective tool for measuring the tortuosity of catalyst materials containing paramagnetic species, which are unmeasurable at high magnetic field strengths. The technique is applied to catalyst precursors with industrially relevant metal loadings (up to 20 wt.%) and allows a direct measurement of tortuosity |
doi_str_mv | 10.1002/cmtd.202200025 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2706921811</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A743938542</galeid><sourcerecordid>A743938542</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3515-1fac9afc3d81a601a7b99f1dc24a9a8d8149047c5b76f4bbc56d146819238bd53</originalsourceid><addsrcrecordid>eNqFkcFPwjAYxRejiUS5em7iGWy7dVuPBEFNQI2Bc_Ota6GErdh2Qf57SzDizfTQfi-_9740L0nuCB4SjOmDbEI9pJhSHCd2kfRoTssBLyi7_PO-Tvreb44IpylhpJeYyVdQbW3aFXqdf6CFdaGz3oQDmivwnVONaoNHwaJ3cNDAqlXBSDSGANuDD2gOQTkDW48Wa2e71RqFtUJLr5DVaGb3aGrUtj5m3yZXOnKq_3PfJMvpZDF-Hszenl7Go9lApoywAdEgOWiZ1iWBHBMoKs41qSXNgEMZ1YzjrJCsKnKdVZVkeU2yvCTxR2VVs_QmuT_l7pz97JQPYmM718aVghY455SUhERqeKJWsFXCtNoGBzKeWjVG2lZpE_VRkaU8LVlGzwbprPdOabFzpgF3EASLYwXiWIH4rSAa-Mmwj0mHf2gxni8ez95vRwiJ-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2706921811</pqid></control><display><type>article</type><title>Extending NMR Tortuosity Measurements to Paramagnetic Catalyst Materials Through the Use of Low Field NMR</title><source>Wiley-Blackwell Open Access Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library All Journals</source><creator>Ward‐Williams, Jordan A. ; Karsten, Vivian ; Guédon, Constant M. ; Baart, Timothy A. ; Munnik, Peter ; Sederman, Andrew J. ; Mantle, Mick D. ; Zheng, Qingyuan ; Gladden, Lynn F.</creator><creatorcontrib>Ward‐Williams, Jordan A. ; Karsten, Vivian ; Guédon, Constant M. ; Baart, Timothy A. ; Munnik, Peter ; Sederman, Andrew J. ; Mantle, Mick D. ; Zheng, Qingyuan ; Gladden, Lynn F.</creatorcontrib><description>Pulsed Field Gradient (PFG) NMR is recognised as an analytical technique used to characterise the tortuosity of porous media by measurement of the self‐diffusion coefficient of a fluid contained within the pore space of the material of interest. Such measurements are usually performed on high magnetic field NMR hardware (>300 MHz). However, many materials of interest, in particular heterogeneous catalysts, contain significant amounts of paramagnetic species, which make such measurements impossible due to their characteristic short spin‐spin relaxation times. Here it is demonstrated that by performing PFG NMR measurements on a low field magnet (2 MHz), tortuosity measurements can be obtained for a range of titania (TiO2) based carriers and catalyst precursors containing paramagnetic species up to a 20 wt.% loading. The approach is also used to compare the tortuosity of two catalyst precursors of the same metal loading prepared by different methods.
Low field Pulsed Field Gradient (PFG) NMR is demonstrated as an effective tool for measuring the tortuosity of catalyst materials containing paramagnetic species, which are unmeasurable at high magnetic field strengths. The technique is applied to catalyst precursors with industrially relevant metal loadings (up to 20 wt.%) and allows a direct measurement of tortuosity</description><identifier>ISSN: 2628-9725</identifier><identifier>EISSN: 2628-9725</identifier><identifier>DOI: 10.1002/cmtd.202200025</identifier><language>eng</language><publisher>Weinheim: John Wiley & Sons, Inc</publisher><subject>Catalysis ; cobalt ; diffusion ; Experiments ; Local transit ; Magnetic fields ; magnetic resonance ; Nuclear magnetic resonance ; Porous materials ; supported catalyst ; tortuosity</subject><ispartof>Chemistry - Methods, 2022-08, Vol.2 (8), p.n/a</ispartof><rights>2022 The Authors. Published by Wiley-VCH GmbH</rights><rights>COPYRIGHT 2022 John Wiley & Sons, Inc.</rights><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3515-1fac9afc3d81a601a7b99f1dc24a9a8d8149047c5b76f4bbc56d146819238bd53</cites><orcidid>0000-0001-8969-1239 ; 0000-0001-9519-0406 ; 0000-0002-7866-5550</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcmtd.202200025$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcmtd.202200025$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,11562,27924,27925,45574,45575,46052,46476</link.rule.ids></links><search><creatorcontrib>Ward‐Williams, Jordan A.</creatorcontrib><creatorcontrib>Karsten, Vivian</creatorcontrib><creatorcontrib>Guédon, Constant M.</creatorcontrib><creatorcontrib>Baart, Timothy A.</creatorcontrib><creatorcontrib>Munnik, Peter</creatorcontrib><creatorcontrib>Sederman, Andrew J.</creatorcontrib><creatorcontrib>Mantle, Mick D.</creatorcontrib><creatorcontrib>Zheng, Qingyuan</creatorcontrib><creatorcontrib>Gladden, Lynn F.</creatorcontrib><title>Extending NMR Tortuosity Measurements to Paramagnetic Catalyst Materials Through the Use of Low Field NMR</title><title>Chemistry - Methods</title><description>Pulsed Field Gradient (PFG) NMR is recognised as an analytical technique used to characterise the tortuosity of porous media by measurement of the self‐diffusion coefficient of a fluid contained within the pore space of the material of interest. Such measurements are usually performed on high magnetic field NMR hardware (>300 MHz). However, many materials of interest, in particular heterogeneous catalysts, contain significant amounts of paramagnetic species, which make such measurements impossible due to their characteristic short spin‐spin relaxation times. Here it is demonstrated that by performing PFG NMR measurements on a low field magnet (2 MHz), tortuosity measurements can be obtained for a range of titania (TiO2) based carriers and catalyst precursors containing paramagnetic species up to a 20 wt.% loading. The approach is also used to compare the tortuosity of two catalyst precursors of the same metal loading prepared by different methods.
Low field Pulsed Field Gradient (PFG) NMR is demonstrated as an effective tool for measuring the tortuosity of catalyst materials containing paramagnetic species, which are unmeasurable at high magnetic field strengths. The technique is applied to catalyst precursors with industrially relevant metal loadings (up to 20 wt.%) and allows a direct measurement of tortuosity</description><subject>Catalysis</subject><subject>cobalt</subject><subject>diffusion</subject><subject>Experiments</subject><subject>Local transit</subject><subject>Magnetic fields</subject><subject>magnetic resonance</subject><subject>Nuclear magnetic resonance</subject><subject>Porous materials</subject><subject>supported catalyst</subject><subject>tortuosity</subject><issn>2628-9725</issn><issn>2628-9725</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkcFPwjAYxRejiUS5em7iGWy7dVuPBEFNQI2Bc_Ota6GErdh2Qf57SzDizfTQfi-_9740L0nuCB4SjOmDbEI9pJhSHCd2kfRoTssBLyi7_PO-Tvreb44IpylhpJeYyVdQbW3aFXqdf6CFdaGz3oQDmivwnVONaoNHwaJ3cNDAqlXBSDSGANuDD2gOQTkDW48Wa2e71RqFtUJLr5DVaGb3aGrUtj5m3yZXOnKq_3PfJMvpZDF-Hszenl7Go9lApoywAdEgOWiZ1iWBHBMoKs41qSXNgEMZ1YzjrJCsKnKdVZVkeU2yvCTxR2VVs_QmuT_l7pz97JQPYmM718aVghY455SUhERqeKJWsFXCtNoGBzKeWjVG2lZpE_VRkaU8LVlGzwbprPdOabFzpgF3EASLYwXiWIH4rSAa-Mmwj0mHf2gxni8ez95vRwiJ-A</recordid><startdate>202208</startdate><enddate>202208</enddate><creator>Ward‐Williams, Jordan A.</creator><creator>Karsten, Vivian</creator><creator>Guédon, Constant M.</creator><creator>Baart, Timothy A.</creator><creator>Munnik, Peter</creator><creator>Sederman, Andrew J.</creator><creator>Mantle, Mick D.</creator><creator>Zheng, Qingyuan</creator><creator>Gladden, Lynn F.</creator><general>John Wiley & Sons, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IAO</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>M2P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-8969-1239</orcidid><orcidid>https://orcid.org/0000-0001-9519-0406</orcidid><orcidid>https://orcid.org/0000-0002-7866-5550</orcidid></search><sort><creationdate>202208</creationdate><title>Extending NMR Tortuosity Measurements to Paramagnetic Catalyst Materials Through the Use of Low Field NMR</title><author>Ward‐Williams, Jordan A. ; Karsten, Vivian ; Guédon, Constant M. ; Baart, Timothy A. ; Munnik, Peter ; Sederman, Andrew J. ; Mantle, Mick D. ; Zheng, Qingyuan ; Gladden, Lynn F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3515-1fac9afc3d81a601a7b99f1dc24a9a8d8149047c5b76f4bbc56d146819238bd53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Catalysis</topic><topic>cobalt</topic><topic>diffusion</topic><topic>Experiments</topic><topic>Local transit</topic><topic>Magnetic fields</topic><topic>magnetic resonance</topic><topic>Nuclear magnetic resonance</topic><topic>Porous materials</topic><topic>supported catalyst</topic><topic>tortuosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ward‐Williams, Jordan A.</creatorcontrib><creatorcontrib>Karsten, Vivian</creatorcontrib><creatorcontrib>Guédon, Constant M.</creatorcontrib><creatorcontrib>Baart, Timothy A.</creatorcontrib><creatorcontrib>Munnik, Peter</creatorcontrib><creatorcontrib>Sederman, Andrew J.</creatorcontrib><creatorcontrib>Mantle, Mick D.</creatorcontrib><creatorcontrib>Zheng, Qingyuan</creatorcontrib><creatorcontrib>Gladden, Lynn F.</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Gale Academic OneFile</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Chemistry - Methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ward‐Williams, Jordan A.</au><au>Karsten, Vivian</au><au>Guédon, Constant M.</au><au>Baart, Timothy A.</au><au>Munnik, Peter</au><au>Sederman, Andrew J.</au><au>Mantle, Mick D.</au><au>Zheng, Qingyuan</au><au>Gladden, Lynn F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extending NMR Tortuosity Measurements to Paramagnetic Catalyst Materials Through the Use of Low Field NMR</atitle><jtitle>Chemistry - Methods</jtitle><date>2022-08</date><risdate>2022</risdate><volume>2</volume><issue>8</issue><epage>n/a</epage><issn>2628-9725</issn><eissn>2628-9725</eissn><abstract>Pulsed Field Gradient (PFG) NMR is recognised as an analytical technique used to characterise the tortuosity of porous media by measurement of the self‐diffusion coefficient of a fluid contained within the pore space of the material of interest. Such measurements are usually performed on high magnetic field NMR hardware (>300 MHz). However, many materials of interest, in particular heterogeneous catalysts, contain significant amounts of paramagnetic species, which make such measurements impossible due to their characteristic short spin‐spin relaxation times. Here it is demonstrated that by performing PFG NMR measurements on a low field magnet (2 MHz), tortuosity measurements can be obtained for a range of titania (TiO2) based carriers and catalyst precursors containing paramagnetic species up to a 20 wt.% loading. The approach is also used to compare the tortuosity of two catalyst precursors of the same metal loading prepared by different methods.
Low field Pulsed Field Gradient (PFG) NMR is demonstrated as an effective tool for measuring the tortuosity of catalyst materials containing paramagnetic species, which are unmeasurable at high magnetic field strengths. The technique is applied to catalyst precursors with industrially relevant metal loadings (up to 20 wt.%) and allows a direct measurement of tortuosity</abstract><cop>Weinheim</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/cmtd.202200025</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-8969-1239</orcidid><orcidid>https://orcid.org/0000-0001-9519-0406</orcidid><orcidid>https://orcid.org/0000-0002-7866-5550</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2628-9725 |
ispartof | Chemistry - Methods, 2022-08, Vol.2 (8), p.n/a |
issn | 2628-9725 2628-9725 |
language | eng |
recordid | cdi_proquest_journals_2706921811 |
source | Wiley-Blackwell Open Access Titles; EZB-FREE-00999 freely available EZB journals; Wiley Online Library All Journals |
subjects | Catalysis cobalt diffusion Experiments Local transit Magnetic fields magnetic resonance Nuclear magnetic resonance Porous materials supported catalyst tortuosity |
title | Extending NMR Tortuosity Measurements to Paramagnetic Catalyst Materials Through the Use of Low Field NMR |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T07%3A14%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extending%20NMR%20Tortuosity%20Measurements%20to%20Paramagnetic%20Catalyst%20Materials%20Through%20the%20Use%20of%20Low%20Field%20NMR&rft.jtitle=Chemistry%20-%20Methods&rft.au=Ward%E2%80%90Williams,%20Jordan%20A.&rft.date=2022-08&rft.volume=2&rft.issue=8&rft.epage=n/a&rft.issn=2628-9725&rft.eissn=2628-9725&rft_id=info:doi/10.1002/cmtd.202200025&rft_dat=%3Cgale_proqu%3EA743938542%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2706921811&rft_id=info:pmid/&rft_galeid=A743938542&rfr_iscdi=true |