Extending NMR Tortuosity Measurements to Paramagnetic Catalyst Materials Through the Use of Low Field NMR

Pulsed Field Gradient (PFG) NMR is recognised as an analytical technique used to characterise the tortuosity of porous media by measurement of the self‐diffusion coefficient of a fluid contained within the pore space of the material of interest. Such measurements are usually performed on high magnet...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry - Methods 2022-08, Vol.2 (8), p.n/a
Hauptverfasser: Ward‐Williams, Jordan A., Karsten, Vivian, Guédon, Constant M., Baart, Timothy A., Munnik, Peter, Sederman, Andrew J., Mantle, Mick D., Zheng, Qingyuan, Gladden, Lynn F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 8
container_start_page
container_title Chemistry - Methods
container_volume 2
creator Ward‐Williams, Jordan A.
Karsten, Vivian
Guédon, Constant M.
Baart, Timothy A.
Munnik, Peter
Sederman, Andrew J.
Mantle, Mick D.
Zheng, Qingyuan
Gladden, Lynn F.
description Pulsed Field Gradient (PFG) NMR is recognised as an analytical technique used to characterise the tortuosity of porous media by measurement of the self‐diffusion coefficient of a fluid contained within the pore space of the material of interest. Such measurements are usually performed on high magnetic field NMR hardware (>300 MHz). However, many materials of interest, in particular heterogeneous catalysts, contain significant amounts of paramagnetic species, which make such measurements impossible due to their characteristic short spin‐spin relaxation times. Here it is demonstrated that by performing PFG NMR measurements on a low field magnet (2 MHz), tortuosity measurements can be obtained for a range of titania (TiO2) based carriers and catalyst precursors containing paramagnetic species up to a 20 wt.% loading. The approach is also used to compare the tortuosity of two catalyst precursors of the same metal loading prepared by different methods. Low field Pulsed Field Gradient (PFG) NMR is demonstrated as an effective tool for measuring the tortuosity of catalyst materials containing paramagnetic species, which are unmeasurable at high magnetic field strengths. The technique is applied to catalyst precursors with industrially relevant metal loadings (up to 20 wt.%) and allows a direct measurement of tortuosity
doi_str_mv 10.1002/cmtd.202200025
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2706921811</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A743938542</galeid><sourcerecordid>A743938542</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3515-1fac9afc3d81a601a7b99f1dc24a9a8d8149047c5b76f4bbc56d146819238bd53</originalsourceid><addsrcrecordid>eNqFkcFPwjAYxRejiUS5em7iGWy7dVuPBEFNQI2Bc_Ota6GErdh2Qf57SzDizfTQfi-_9740L0nuCB4SjOmDbEI9pJhSHCd2kfRoTssBLyi7_PO-Tvreb44IpylhpJeYyVdQbW3aFXqdf6CFdaGz3oQDmivwnVONaoNHwaJ3cNDAqlXBSDSGANuDD2gOQTkDW48Wa2e71RqFtUJLr5DVaGb3aGrUtj5m3yZXOnKq_3PfJMvpZDF-Hszenl7Go9lApoywAdEgOWiZ1iWBHBMoKs41qSXNgEMZ1YzjrJCsKnKdVZVkeU2yvCTxR2VVs_QmuT_l7pz97JQPYmM718aVghY455SUhERqeKJWsFXCtNoGBzKeWjVG2lZpE_VRkaU8LVlGzwbprPdOabFzpgF3EASLYwXiWIH4rSAa-Mmwj0mHf2gxni8ez95vRwiJ-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2706921811</pqid></control><display><type>article</type><title>Extending NMR Tortuosity Measurements to Paramagnetic Catalyst Materials Through the Use of Low Field NMR</title><source>Wiley-Blackwell Open Access Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library All Journals</source><creator>Ward‐Williams, Jordan A. ; Karsten, Vivian ; Guédon, Constant M. ; Baart, Timothy A. ; Munnik, Peter ; Sederman, Andrew J. ; Mantle, Mick D. ; Zheng, Qingyuan ; Gladden, Lynn F.</creator><creatorcontrib>Ward‐Williams, Jordan A. ; Karsten, Vivian ; Guédon, Constant M. ; Baart, Timothy A. ; Munnik, Peter ; Sederman, Andrew J. ; Mantle, Mick D. ; Zheng, Qingyuan ; Gladden, Lynn F.</creatorcontrib><description>Pulsed Field Gradient (PFG) NMR is recognised as an analytical technique used to characterise the tortuosity of porous media by measurement of the self‐diffusion coefficient of a fluid contained within the pore space of the material of interest. Such measurements are usually performed on high magnetic field NMR hardware (&gt;300 MHz). However, many materials of interest, in particular heterogeneous catalysts, contain significant amounts of paramagnetic species, which make such measurements impossible due to their characteristic short spin‐spin relaxation times. Here it is demonstrated that by performing PFG NMR measurements on a low field magnet (2 MHz), tortuosity measurements can be obtained for a range of titania (TiO2) based carriers and catalyst precursors containing paramagnetic species up to a 20 wt.% loading. The approach is also used to compare the tortuosity of two catalyst precursors of the same metal loading prepared by different methods. Low field Pulsed Field Gradient (PFG) NMR is demonstrated as an effective tool for measuring the tortuosity of catalyst materials containing paramagnetic species, which are unmeasurable at high magnetic field strengths. The technique is applied to catalyst precursors with industrially relevant metal loadings (up to 20 wt.%) and allows a direct measurement of tortuosity</description><identifier>ISSN: 2628-9725</identifier><identifier>EISSN: 2628-9725</identifier><identifier>DOI: 10.1002/cmtd.202200025</identifier><language>eng</language><publisher>Weinheim: John Wiley &amp; Sons, Inc</publisher><subject>Catalysis ; cobalt ; diffusion ; Experiments ; Local transit ; Magnetic fields ; magnetic resonance ; Nuclear magnetic resonance ; Porous materials ; supported catalyst ; tortuosity</subject><ispartof>Chemistry - Methods, 2022-08, Vol.2 (8), p.n/a</ispartof><rights>2022 The Authors. Published by Wiley-VCH GmbH</rights><rights>COPYRIGHT 2022 John Wiley &amp; Sons, Inc.</rights><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3515-1fac9afc3d81a601a7b99f1dc24a9a8d8149047c5b76f4bbc56d146819238bd53</cites><orcidid>0000-0001-8969-1239 ; 0000-0001-9519-0406 ; 0000-0002-7866-5550</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcmtd.202200025$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcmtd.202200025$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,11562,27924,27925,45574,45575,46052,46476</link.rule.ids></links><search><creatorcontrib>Ward‐Williams, Jordan A.</creatorcontrib><creatorcontrib>Karsten, Vivian</creatorcontrib><creatorcontrib>Guédon, Constant M.</creatorcontrib><creatorcontrib>Baart, Timothy A.</creatorcontrib><creatorcontrib>Munnik, Peter</creatorcontrib><creatorcontrib>Sederman, Andrew J.</creatorcontrib><creatorcontrib>Mantle, Mick D.</creatorcontrib><creatorcontrib>Zheng, Qingyuan</creatorcontrib><creatorcontrib>Gladden, Lynn F.</creatorcontrib><title>Extending NMR Tortuosity Measurements to Paramagnetic Catalyst Materials Through the Use of Low Field NMR</title><title>Chemistry - Methods</title><description>Pulsed Field Gradient (PFG) NMR is recognised as an analytical technique used to characterise the tortuosity of porous media by measurement of the self‐diffusion coefficient of a fluid contained within the pore space of the material of interest. Such measurements are usually performed on high magnetic field NMR hardware (&gt;300 MHz). However, many materials of interest, in particular heterogeneous catalysts, contain significant amounts of paramagnetic species, which make such measurements impossible due to their characteristic short spin‐spin relaxation times. Here it is demonstrated that by performing PFG NMR measurements on a low field magnet (2 MHz), tortuosity measurements can be obtained for a range of titania (TiO2) based carriers and catalyst precursors containing paramagnetic species up to a 20 wt.% loading. The approach is also used to compare the tortuosity of two catalyst precursors of the same metal loading prepared by different methods. Low field Pulsed Field Gradient (PFG) NMR is demonstrated as an effective tool for measuring the tortuosity of catalyst materials containing paramagnetic species, which are unmeasurable at high magnetic field strengths. The technique is applied to catalyst precursors with industrially relevant metal loadings (up to 20 wt.%) and allows a direct measurement of tortuosity</description><subject>Catalysis</subject><subject>cobalt</subject><subject>diffusion</subject><subject>Experiments</subject><subject>Local transit</subject><subject>Magnetic fields</subject><subject>magnetic resonance</subject><subject>Nuclear magnetic resonance</subject><subject>Porous materials</subject><subject>supported catalyst</subject><subject>tortuosity</subject><issn>2628-9725</issn><issn>2628-9725</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkcFPwjAYxRejiUS5em7iGWy7dVuPBEFNQI2Bc_Ota6GErdh2Qf57SzDizfTQfi-_9740L0nuCB4SjOmDbEI9pJhSHCd2kfRoTssBLyi7_PO-Tvreb44IpylhpJeYyVdQbW3aFXqdf6CFdaGz3oQDmivwnVONaoNHwaJ3cNDAqlXBSDSGANuDD2gOQTkDW48Wa2e71RqFtUJLr5DVaGb3aGrUtj5m3yZXOnKq_3PfJMvpZDF-Hszenl7Go9lApoywAdEgOWiZ1iWBHBMoKs41qSXNgEMZ1YzjrJCsKnKdVZVkeU2yvCTxR2VVs_QmuT_l7pz97JQPYmM718aVghY455SUhERqeKJWsFXCtNoGBzKeWjVG2lZpE_VRkaU8LVlGzwbprPdOabFzpgF3EASLYwXiWIH4rSAa-Mmwj0mHf2gxni8ez95vRwiJ-A</recordid><startdate>202208</startdate><enddate>202208</enddate><creator>Ward‐Williams, Jordan A.</creator><creator>Karsten, Vivian</creator><creator>Guédon, Constant M.</creator><creator>Baart, Timothy A.</creator><creator>Munnik, Peter</creator><creator>Sederman, Andrew J.</creator><creator>Mantle, Mick D.</creator><creator>Zheng, Qingyuan</creator><creator>Gladden, Lynn F.</creator><general>John Wiley &amp; Sons, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IAO</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>M2P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-8969-1239</orcidid><orcidid>https://orcid.org/0000-0001-9519-0406</orcidid><orcidid>https://orcid.org/0000-0002-7866-5550</orcidid></search><sort><creationdate>202208</creationdate><title>Extending NMR Tortuosity Measurements to Paramagnetic Catalyst Materials Through the Use of Low Field NMR</title><author>Ward‐Williams, Jordan A. ; Karsten, Vivian ; Guédon, Constant M. ; Baart, Timothy A. ; Munnik, Peter ; Sederman, Andrew J. ; Mantle, Mick D. ; Zheng, Qingyuan ; Gladden, Lynn F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3515-1fac9afc3d81a601a7b99f1dc24a9a8d8149047c5b76f4bbc56d146819238bd53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Catalysis</topic><topic>cobalt</topic><topic>diffusion</topic><topic>Experiments</topic><topic>Local transit</topic><topic>Magnetic fields</topic><topic>magnetic resonance</topic><topic>Nuclear magnetic resonance</topic><topic>Porous materials</topic><topic>supported catalyst</topic><topic>tortuosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ward‐Williams, Jordan A.</creatorcontrib><creatorcontrib>Karsten, Vivian</creatorcontrib><creatorcontrib>Guédon, Constant M.</creatorcontrib><creatorcontrib>Baart, Timothy A.</creatorcontrib><creatorcontrib>Munnik, Peter</creatorcontrib><creatorcontrib>Sederman, Andrew J.</creatorcontrib><creatorcontrib>Mantle, Mick D.</creatorcontrib><creatorcontrib>Zheng, Qingyuan</creatorcontrib><creatorcontrib>Gladden, Lynn F.</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Gale Academic OneFile</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Chemistry - Methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ward‐Williams, Jordan A.</au><au>Karsten, Vivian</au><au>Guédon, Constant M.</au><au>Baart, Timothy A.</au><au>Munnik, Peter</au><au>Sederman, Andrew J.</au><au>Mantle, Mick D.</au><au>Zheng, Qingyuan</au><au>Gladden, Lynn F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extending NMR Tortuosity Measurements to Paramagnetic Catalyst Materials Through the Use of Low Field NMR</atitle><jtitle>Chemistry - Methods</jtitle><date>2022-08</date><risdate>2022</risdate><volume>2</volume><issue>8</issue><epage>n/a</epage><issn>2628-9725</issn><eissn>2628-9725</eissn><abstract>Pulsed Field Gradient (PFG) NMR is recognised as an analytical technique used to characterise the tortuosity of porous media by measurement of the self‐diffusion coefficient of a fluid contained within the pore space of the material of interest. Such measurements are usually performed on high magnetic field NMR hardware (&gt;300 MHz). However, many materials of interest, in particular heterogeneous catalysts, contain significant amounts of paramagnetic species, which make such measurements impossible due to their characteristic short spin‐spin relaxation times. Here it is demonstrated that by performing PFG NMR measurements on a low field magnet (2 MHz), tortuosity measurements can be obtained for a range of titania (TiO2) based carriers and catalyst precursors containing paramagnetic species up to a 20 wt.% loading. The approach is also used to compare the tortuosity of two catalyst precursors of the same metal loading prepared by different methods. Low field Pulsed Field Gradient (PFG) NMR is demonstrated as an effective tool for measuring the tortuosity of catalyst materials containing paramagnetic species, which are unmeasurable at high magnetic field strengths. The technique is applied to catalyst precursors with industrially relevant metal loadings (up to 20 wt.%) and allows a direct measurement of tortuosity</abstract><cop>Weinheim</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/cmtd.202200025</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-8969-1239</orcidid><orcidid>https://orcid.org/0000-0001-9519-0406</orcidid><orcidid>https://orcid.org/0000-0002-7866-5550</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2628-9725
ispartof Chemistry - Methods, 2022-08, Vol.2 (8), p.n/a
issn 2628-9725
2628-9725
language eng
recordid cdi_proquest_journals_2706921811
source Wiley-Blackwell Open Access Titles; EZB-FREE-00999 freely available EZB journals; Wiley Online Library All Journals
subjects Catalysis
cobalt
diffusion
Experiments
Local transit
Magnetic fields
magnetic resonance
Nuclear magnetic resonance
Porous materials
supported catalyst
tortuosity
title Extending NMR Tortuosity Measurements to Paramagnetic Catalyst Materials Through the Use of Low Field NMR
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T07%3A14%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extending%20NMR%20Tortuosity%20Measurements%20to%20Paramagnetic%20Catalyst%20Materials%20Through%20the%20Use%20of%20Low%20Field%20NMR&rft.jtitle=Chemistry%20-%20Methods&rft.au=Ward%E2%80%90Williams,%20Jordan%20A.&rft.date=2022-08&rft.volume=2&rft.issue=8&rft.epage=n/a&rft.issn=2628-9725&rft.eissn=2628-9725&rft_id=info:doi/10.1002/cmtd.202200025&rft_dat=%3Cgale_proqu%3EA743938542%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2706921811&rft_id=info:pmid/&rft_galeid=A743938542&rfr_iscdi=true