Multi-objective optimization of WEDM process parameters on titanium grade 9 using ANN and grey relational analysis

Wire Electrical Discharge Machining (WEDM) is a specialized electro-thermal, non-conventional machining process capable of machining complex shapes. This study aims to explore and optimize Wire Electro-Discharge Machining process parameters on Titanium Grade 9(Ti3Al2.5V). Titanium Grade 9, is mainly...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Iqbal, Mohammed U., Santhakumar, J., Dixit, Suyash
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2460
creator Iqbal, Mohammed U.
Santhakumar, J.
Dixit, Suyash
description Wire Electrical Discharge Machining (WEDM) is a specialized electro-thermal, non-conventional machining process capable of machining complex shapes. This study aims to explore and optimize Wire Electro-Discharge Machining process parameters on Titanium Grade 9(Ti3Al2.5V). Titanium Grade 9, is mainly used for low weight, high strength applications. The objective of this research is to develop an Artificial Neural Network (ANN) to maximize Material Removal Rate(MRR) and minimize Avg. Surface Roughness (Ra) and Avg. of Peak Surface Roughness (Rz). Response Surface Methodology's Face Centered Composite Design was used to select experiments and used to study the influence of the combination of Ton, Toff and Gap Voltage. Further, the process parameters were studied to chosen optimized values of MRR, Ra and Rz using Grey analysis and average error for the ANN network is kept under 10%. By confirmation experiment for most optimum results by Grey Analysis, MRR is obtained as 65.32mm3/min, Ra and Rz as 8.45 µs and 59.32 µs respectively.
doi_str_mv 10.1063/5.0095657
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2706904561</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2706904561</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2037-5f68f5f9f8e45956a714b8eddb551788cb859171d41bfbdf890fbcb6db6812763</originalsourceid><addsrcrecordid>eNp9kE1LAzEYhIMoWKsH_0HAm7A12d187LHU-gFtvSh6C8kmKSm73TXJFuqvN7WCN08vzPswzAwA1xhNMKLFHZkgVBFK2AkYYUJwxiimp2CU1DLLy-LjHFyEsEEorxjjI-CXQxNd1qmNqaPbGdj10bXuS0bXbWFn4fv8fgl739UmBNhLL1sTjQ8wfaOLcuuGFq691AZWcAhuu4bT1QrKrU6q2UNvmh8r2SRNNvvgwiU4s7IJ5ur3jsHbw_x19pQtXh6fZ9NF1ueoYBmxlFtiK8tNSVIlyXCpuNFapVqM81pxUmGGdYmVVdryCllVK6oV5ThntBiDm6NvSv85mBDFpht8ChFEzhCtUEkoTtTtkQp1qnOIKnrvWun3AiNx2FQQ8bvpf_Cu83-g6LUtvgGcPnif</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2706904561</pqid></control><display><type>conference_proceeding</type><title>Multi-objective optimization of WEDM process parameters on titanium grade 9 using ANN and grey relational analysis</title><source>AIP Journals Complete</source><creator>Iqbal, Mohammed U. ; Santhakumar, J. ; Dixit, Suyash</creator><contributor>John, MR Stalin ; Iqbal, U Mohammed</contributor><creatorcontrib>Iqbal, Mohammed U. ; Santhakumar, J. ; Dixit, Suyash ; John, MR Stalin ; Iqbal, U Mohammed</creatorcontrib><description>Wire Electrical Discharge Machining (WEDM) is a specialized electro-thermal, non-conventional machining process capable of machining complex shapes. This study aims to explore and optimize Wire Electro-Discharge Machining process parameters on Titanium Grade 9(Ti3Al2.5V). Titanium Grade 9, is mainly used for low weight, high strength applications. The objective of this research is to develop an Artificial Neural Network (ANN) to maximize Material Removal Rate(MRR) and minimize Avg. Surface Roughness (Ra) and Avg. of Peak Surface Roughness (Rz). Response Surface Methodology's Face Centered Composite Design was used to select experiments and used to study the influence of the combination of Ton, Toff and Gap Voltage. Further, the process parameters were studied to chosen optimized values of MRR, Ra and Rz using Grey analysis and average error for the ANN network is kept under 10%. By confirmation experiment for most optimum results by Grey Analysis, MRR is obtained as 65.32mm3/min, Ra and Rz as 8.45 µs and 59.32 µs respectively.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0095657</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Artificial neural networks ; Electric discharge machining ; Error analysis ; Material removal rate (machining) ; Multiple objective analysis ; Process parameters ; Rapid prototyping ; Response surface methodology ; Shape optimization ; Surface roughness ; Titanium ; Wire</subject><ispartof>AIP conference proceedings, 2022, Vol.2460 (1)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0095657$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76384</link.rule.ids></links><search><contributor>John, MR Stalin</contributor><contributor>Iqbal, U Mohammed</contributor><creatorcontrib>Iqbal, Mohammed U.</creatorcontrib><creatorcontrib>Santhakumar, J.</creatorcontrib><creatorcontrib>Dixit, Suyash</creatorcontrib><title>Multi-objective optimization of WEDM process parameters on titanium grade 9 using ANN and grey relational analysis</title><title>AIP conference proceedings</title><description>Wire Electrical Discharge Machining (WEDM) is a specialized electro-thermal, non-conventional machining process capable of machining complex shapes. This study aims to explore and optimize Wire Electro-Discharge Machining process parameters on Titanium Grade 9(Ti3Al2.5V). Titanium Grade 9, is mainly used for low weight, high strength applications. The objective of this research is to develop an Artificial Neural Network (ANN) to maximize Material Removal Rate(MRR) and minimize Avg. Surface Roughness (Ra) and Avg. of Peak Surface Roughness (Rz). Response Surface Methodology's Face Centered Composite Design was used to select experiments and used to study the influence of the combination of Ton, Toff and Gap Voltage. Further, the process parameters were studied to chosen optimized values of MRR, Ra and Rz using Grey analysis and average error for the ANN network is kept under 10%. By confirmation experiment for most optimum results by Grey Analysis, MRR is obtained as 65.32mm3/min, Ra and Rz as 8.45 µs and 59.32 µs respectively.</description><subject>Artificial neural networks</subject><subject>Electric discharge machining</subject><subject>Error analysis</subject><subject>Material removal rate (machining)</subject><subject>Multiple objective analysis</subject><subject>Process parameters</subject><subject>Rapid prototyping</subject><subject>Response surface methodology</subject><subject>Shape optimization</subject><subject>Surface roughness</subject><subject>Titanium</subject><subject>Wire</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kE1LAzEYhIMoWKsH_0HAm7A12d187LHU-gFtvSh6C8kmKSm73TXJFuqvN7WCN08vzPswzAwA1xhNMKLFHZkgVBFK2AkYYUJwxiimp2CU1DLLy-LjHFyEsEEorxjjI-CXQxNd1qmNqaPbGdj10bXuS0bXbWFn4fv8fgl739UmBNhLL1sTjQ8wfaOLcuuGFq691AZWcAhuu4bT1QrKrU6q2UNvmh8r2SRNNvvgwiU4s7IJ5ur3jsHbw_x19pQtXh6fZ9NF1ueoYBmxlFtiK8tNSVIlyXCpuNFapVqM81pxUmGGdYmVVdryCllVK6oV5ThntBiDm6NvSv85mBDFpht8ChFEzhCtUEkoTtTtkQp1qnOIKnrvWun3AiNx2FQQ8bvpf_Cu83-g6LUtvgGcPnif</recordid><startdate>20220826</startdate><enddate>20220826</enddate><creator>Iqbal, Mohammed U.</creator><creator>Santhakumar, J.</creator><creator>Dixit, Suyash</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20220826</creationdate><title>Multi-objective optimization of WEDM process parameters on titanium grade 9 using ANN and grey relational analysis</title><author>Iqbal, Mohammed U. ; Santhakumar, J. ; Dixit, Suyash</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2037-5f68f5f9f8e45956a714b8eddb551788cb859171d41bfbdf890fbcb6db6812763</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Electric discharge machining</topic><topic>Error analysis</topic><topic>Material removal rate (machining)</topic><topic>Multiple objective analysis</topic><topic>Process parameters</topic><topic>Rapid prototyping</topic><topic>Response surface methodology</topic><topic>Shape optimization</topic><topic>Surface roughness</topic><topic>Titanium</topic><topic>Wire</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iqbal, Mohammed U.</creatorcontrib><creatorcontrib>Santhakumar, J.</creatorcontrib><creatorcontrib>Dixit, Suyash</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iqbal, Mohammed U.</au><au>Santhakumar, J.</au><au>Dixit, Suyash</au><au>John, MR Stalin</au><au>Iqbal, U Mohammed</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Multi-objective optimization of WEDM process parameters on titanium grade 9 using ANN and grey relational analysis</atitle><btitle>AIP conference proceedings</btitle><date>2022-08-26</date><risdate>2022</risdate><volume>2460</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Wire Electrical Discharge Machining (WEDM) is a specialized electro-thermal, non-conventional machining process capable of machining complex shapes. This study aims to explore and optimize Wire Electro-Discharge Machining process parameters on Titanium Grade 9(Ti3Al2.5V). Titanium Grade 9, is mainly used for low weight, high strength applications. The objective of this research is to develop an Artificial Neural Network (ANN) to maximize Material Removal Rate(MRR) and minimize Avg. Surface Roughness (Ra) and Avg. of Peak Surface Roughness (Rz). Response Surface Methodology's Face Centered Composite Design was used to select experiments and used to study the influence of the combination of Ton, Toff and Gap Voltage. Further, the process parameters were studied to chosen optimized values of MRR, Ra and Rz using Grey analysis and average error for the ANN network is kept under 10%. By confirmation experiment for most optimum results by Grey Analysis, MRR is obtained as 65.32mm3/min, Ra and Rz as 8.45 µs and 59.32 µs respectively.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0095657</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2022, Vol.2460 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2706904561
source AIP Journals Complete
subjects Artificial neural networks
Electric discharge machining
Error analysis
Material removal rate (machining)
Multiple objective analysis
Process parameters
Rapid prototyping
Response surface methodology
Shape optimization
Surface roughness
Titanium
Wire
title Multi-objective optimization of WEDM process parameters on titanium grade 9 using ANN and grey relational analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T02%3A01%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Multi-objective%20optimization%20of%20WEDM%20process%20parameters%20on%20titanium%20grade%209%20using%20ANN%20and%20grey%20relational%20analysis&rft.btitle=AIP%20conference%20proceedings&rft.au=Iqbal,%20Mohammed%20U.&rft.date=2022-08-26&rft.volume=2460&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0095657&rft_dat=%3Cproquest_scita%3E2706904561%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2706904561&rft_id=info:pmid/&rfr_iscdi=true