A Novel Quality-Related Incipient Fault Detection Method Based on Canonical Variate Analysis and Kullback-Leibler Divergence for Large-Scale Industrial Processes
Quality-related fault detection is an effective way to ensure the stability of product quality and the safety of industrial processes. Quality abnormality is often caused by incipient faults, which propagate through the connectivity path among the equipment and subsystems, and eventually become sign...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on instrumentation and measurement 2022, Vol.71, p.1-10 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on instrumentation and measurement |
container_volume | 71 |
creator | Dong, Jie Jiang, Lingzhi Zhang, Chi Peng, Kaixiang |
description | Quality-related fault detection is an effective way to ensure the stability of product quality and the safety of industrial processes. Quality abnormality is often caused by incipient faults, which propagate through the connectivity path among the equipment and subsystems, and eventually become significant faults that affect product quality and production efficiency. In this article, a quality-related incipient fault detection method for large-scale industrial process is proposed. First, a fault-relevant variable selection strategy based on Kullback-Leibler divergence (KLD) is proposed to obtain the optimal variable subsets of quality-related and quality-unrelated faults. Second, canonical variate analysis is applied to estimate the canonical variables from the collected processes data. Third, considering that KLD has a high sensitivity to incipient faults, it is used to quantify the dissimilarity between the distributions of canonical vectors before and after fault occurs. Finally, Bayesian inference is employed to fuse the detection results of all sub-blocks to get an intuitive global detection result. The advantages and validity of the proposed scheme are verified based on the Tennessee Eastman process. |
doi_str_mv | 10.1109/TIM.2022.3199239 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2706891644</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9858165</ieee_id><sourcerecordid>2706891644</sourcerecordid><originalsourceid>FETCH-LOGICAL-c221t-e6b876fc8a475137071187d92c046590f4f644e3942ab7599738144bbedf7b2a3</originalsourceid><addsrcrecordid>eNo9kU1rGzEQhkVpoa6Te6AXQc_rSFqttDq6dpOYOs13r4tWO5vIUVaupA345-SfVsYhp2Hgfd5heBA6oWRGKVGn96vLGSOMzUqqFCvVJzShVSULJQT7jCaE0LpQvBJf0bcYN4QQKbicoLc5_uNfweGbUTubdsUtOJ2gw6vB2K2FIeEzPbqEl5DAJOsHfAnpyXf4p445lveFHvxgjXb4rw42w3g-aLeLNmI9dPj36FyrzXOxBts6CHhpXyE8wmAA9z7gtc5LcZd5yEe7MaZc4vB18AZihHiEvvTaRTh-n1P0cPbrfnFRrK_OV4v5ujCM0VSAaGspelNrLitaSiIprWWnmCFcVIr0vBecQ6k4062slJJlTTlvW-h62TJdTtGPQ-82-H8jxNRs_BjyJ7Fhkoha0cznFDmkTPAxBuibbbAvOuwaSpq9iCaLaPYimncRGfl-QCwAfMRVXdVUVOV_69yFSw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2706891644</pqid></control><display><type>article</type><title>A Novel Quality-Related Incipient Fault Detection Method Based on Canonical Variate Analysis and Kullback-Leibler Divergence for Large-Scale Industrial Processes</title><source>IEEE/IET Electronic Library (IEL)</source><creator>Dong, Jie ; Jiang, Lingzhi ; Zhang, Chi ; Peng, Kaixiang</creator><creatorcontrib>Dong, Jie ; Jiang, Lingzhi ; Zhang, Chi ; Peng, Kaixiang</creatorcontrib><description>Quality-related fault detection is an effective way to ensure the stability of product quality and the safety of industrial processes. Quality abnormality is often caused by incipient faults, which propagate through the connectivity path among the equipment and subsystems, and eventually become significant faults that affect product quality and production efficiency. In this article, a quality-related incipient fault detection method for large-scale industrial process is proposed. First, a fault-relevant variable selection strategy based on Kullback-Leibler divergence (KLD) is proposed to obtain the optimal variable subsets of quality-related and quality-unrelated faults. Second, canonical variate analysis is applied to estimate the canonical variables from the collected processes data. Third, considering that KLD has a high sensitivity to incipient faults, it is used to quantify the dissimilarity between the distributions of canonical vectors before and after fault occurs. Finally, Bayesian inference is employed to fuse the detection results of all sub-blocks to get an intuitive global detection result. The advantages and validity of the proposed scheme are verified based on the Tennessee Eastman process.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2022.3199239</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Bayesian analysis ; Canonical variate analysis ; Correlation ; Fault detection ; Faults ; Feature extraction ; incipient fault ; Kullback–Leibler divergence (KLD) ; large-scale industrial processes ; Principal component analysis ; Process control ; Product design ; Product quality ; Quality assessment ; quality-related fault detection ; Statistical inference ; Subsystems</subject><ispartof>IEEE transactions on instrumentation and measurement, 2022, Vol.71, p.1-10</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c221t-e6b876fc8a475137071187d92c046590f4f644e3942ab7599738144bbedf7b2a3</citedby><cites>FETCH-LOGICAL-c221t-e6b876fc8a475137071187d92c046590f4f644e3942ab7599738144bbedf7b2a3</cites><orcidid>0000-0001-7585-6637 ; 0000-0003-3929-8660 ; 0000-0003-1047-451X ; 0000-0001-8314-3047</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9858165$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4009,27902,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9858165$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dong, Jie</creatorcontrib><creatorcontrib>Jiang, Lingzhi</creatorcontrib><creatorcontrib>Zhang, Chi</creatorcontrib><creatorcontrib>Peng, Kaixiang</creatorcontrib><title>A Novel Quality-Related Incipient Fault Detection Method Based on Canonical Variate Analysis and Kullback-Leibler Divergence for Large-Scale Industrial Processes</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>Quality-related fault detection is an effective way to ensure the stability of product quality and the safety of industrial processes. Quality abnormality is often caused by incipient faults, which propagate through the connectivity path among the equipment and subsystems, and eventually become significant faults that affect product quality and production efficiency. In this article, a quality-related incipient fault detection method for large-scale industrial process is proposed. First, a fault-relevant variable selection strategy based on Kullback-Leibler divergence (KLD) is proposed to obtain the optimal variable subsets of quality-related and quality-unrelated faults. Second, canonical variate analysis is applied to estimate the canonical variables from the collected processes data. Third, considering that KLD has a high sensitivity to incipient faults, it is used to quantify the dissimilarity between the distributions of canonical vectors before and after fault occurs. Finally, Bayesian inference is employed to fuse the detection results of all sub-blocks to get an intuitive global detection result. The advantages and validity of the proposed scheme are verified based on the Tennessee Eastman process.</description><subject>Bayesian analysis</subject><subject>Canonical variate analysis</subject><subject>Correlation</subject><subject>Fault detection</subject><subject>Faults</subject><subject>Feature extraction</subject><subject>incipient fault</subject><subject>Kullback–Leibler divergence (KLD)</subject><subject>large-scale industrial processes</subject><subject>Principal component analysis</subject><subject>Process control</subject><subject>Product design</subject><subject>Product quality</subject><subject>Quality assessment</subject><subject>quality-related fault detection</subject><subject>Statistical inference</subject><subject>Subsystems</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kU1rGzEQhkVpoa6Te6AXQc_rSFqttDq6dpOYOs13r4tWO5vIUVaupA345-SfVsYhp2Hgfd5heBA6oWRGKVGn96vLGSOMzUqqFCvVJzShVSULJQT7jCaE0LpQvBJf0bcYN4QQKbicoLc5_uNfweGbUTubdsUtOJ2gw6vB2K2FIeEzPbqEl5DAJOsHfAnpyXf4p445lveFHvxgjXb4rw42w3g-aLeLNmI9dPj36FyrzXOxBts6CHhpXyE8wmAA9z7gtc5LcZd5yEe7MaZc4vB18AZihHiEvvTaRTh-n1P0cPbrfnFRrK_OV4v5ujCM0VSAaGspelNrLitaSiIprWWnmCFcVIr0vBecQ6k4062slJJlTTlvW-h62TJdTtGPQ-82-H8jxNRs_BjyJ7Fhkoha0cznFDmkTPAxBuibbbAvOuwaSpq9iCaLaPYimncRGfl-QCwAfMRVXdVUVOV_69yFSw</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Dong, Jie</creator><creator>Jiang, Lingzhi</creator><creator>Zhang, Chi</creator><creator>Peng, Kaixiang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7585-6637</orcidid><orcidid>https://orcid.org/0000-0003-3929-8660</orcidid><orcidid>https://orcid.org/0000-0003-1047-451X</orcidid><orcidid>https://orcid.org/0000-0001-8314-3047</orcidid></search><sort><creationdate>2022</creationdate><title>A Novel Quality-Related Incipient Fault Detection Method Based on Canonical Variate Analysis and Kullback-Leibler Divergence for Large-Scale Industrial Processes</title><author>Dong, Jie ; Jiang, Lingzhi ; Zhang, Chi ; Peng, Kaixiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c221t-e6b876fc8a475137071187d92c046590f4f644e3942ab7599738144bbedf7b2a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bayesian analysis</topic><topic>Canonical variate analysis</topic><topic>Correlation</topic><topic>Fault detection</topic><topic>Faults</topic><topic>Feature extraction</topic><topic>incipient fault</topic><topic>Kullback–Leibler divergence (KLD)</topic><topic>large-scale industrial processes</topic><topic>Principal component analysis</topic><topic>Process control</topic><topic>Product design</topic><topic>Product quality</topic><topic>Quality assessment</topic><topic>quality-related fault detection</topic><topic>Statistical inference</topic><topic>Subsystems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Jie</creatorcontrib><creatorcontrib>Jiang, Lingzhi</creatorcontrib><creatorcontrib>Zhang, Chi</creatorcontrib><creatorcontrib>Peng, Kaixiang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dong, Jie</au><au>Jiang, Lingzhi</au><au>Zhang, Chi</au><au>Peng, Kaixiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Quality-Related Incipient Fault Detection Method Based on Canonical Variate Analysis and Kullback-Leibler Divergence for Large-Scale Industrial Processes</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2022</date><risdate>2022</risdate><volume>71</volume><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>Quality-related fault detection is an effective way to ensure the stability of product quality and the safety of industrial processes. Quality abnormality is often caused by incipient faults, which propagate through the connectivity path among the equipment and subsystems, and eventually become significant faults that affect product quality and production efficiency. In this article, a quality-related incipient fault detection method for large-scale industrial process is proposed. First, a fault-relevant variable selection strategy based on Kullback-Leibler divergence (KLD) is proposed to obtain the optimal variable subsets of quality-related and quality-unrelated faults. Second, canonical variate analysis is applied to estimate the canonical variables from the collected processes data. Third, considering that KLD has a high sensitivity to incipient faults, it is used to quantify the dissimilarity between the distributions of canonical vectors before and after fault occurs. Finally, Bayesian inference is employed to fuse the detection results of all sub-blocks to get an intuitive global detection result. The advantages and validity of the proposed scheme are verified based on the Tennessee Eastman process.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2022.3199239</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7585-6637</orcidid><orcidid>https://orcid.org/0000-0003-3929-8660</orcidid><orcidid>https://orcid.org/0000-0003-1047-451X</orcidid><orcidid>https://orcid.org/0000-0001-8314-3047</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9456 |
ispartof | IEEE transactions on instrumentation and measurement, 2022, Vol.71, p.1-10 |
issn | 0018-9456 1557-9662 |
language | eng |
recordid | cdi_proquest_journals_2706891644 |
source | IEEE/IET Electronic Library (IEL) |
subjects | Bayesian analysis Canonical variate analysis Correlation Fault detection Faults Feature extraction incipient fault Kullback–Leibler divergence (KLD) large-scale industrial processes Principal component analysis Process control Product design Product quality Quality assessment quality-related fault detection Statistical inference Subsystems |
title | A Novel Quality-Related Incipient Fault Detection Method Based on Canonical Variate Analysis and Kullback-Leibler Divergence for Large-Scale Industrial Processes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T19%3A46%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Quality-Related%20Incipient%20Fault%20Detection%20Method%20Based%20on%20Canonical%20Variate%20Analysis%20and%20Kullback-Leibler%20Divergence%20for%20Large-Scale%20Industrial%20Processes&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Dong,%20Jie&rft.date=2022&rft.volume=71&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2022.3199239&rft_dat=%3Cproquest_RIE%3E2706891644%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2706891644&rft_id=info:pmid/&rft_ieee_id=9858165&rfr_iscdi=true |