A Novel Quality-Related Incipient Fault Detection Method Based on Canonical Variate Analysis and Kullback-Leibler Divergence for Large-Scale Industrial Processes

Quality-related fault detection is an effective way to ensure the stability of product quality and the safety of industrial processes. Quality abnormality is often caused by incipient faults, which propagate through the connectivity path among the equipment and subsystems, and eventually become sign...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on instrumentation and measurement 2022, Vol.71, p.1-10
Hauptverfasser: Dong, Jie, Jiang, Lingzhi, Zhang, Chi, Peng, Kaixiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue
container_start_page 1
container_title IEEE transactions on instrumentation and measurement
container_volume 71
creator Dong, Jie
Jiang, Lingzhi
Zhang, Chi
Peng, Kaixiang
description Quality-related fault detection is an effective way to ensure the stability of product quality and the safety of industrial processes. Quality abnormality is often caused by incipient faults, which propagate through the connectivity path among the equipment and subsystems, and eventually become significant faults that affect product quality and production efficiency. In this article, a quality-related incipient fault detection method for large-scale industrial process is proposed. First, a fault-relevant variable selection strategy based on Kullback-Leibler divergence (KLD) is proposed to obtain the optimal variable subsets of quality-related and quality-unrelated faults. Second, canonical variate analysis is applied to estimate the canonical variables from the collected processes data. Third, considering that KLD has a high sensitivity to incipient faults, it is used to quantify the dissimilarity between the distributions of canonical vectors before and after fault occurs. Finally, Bayesian inference is employed to fuse the detection results of all sub-blocks to get an intuitive global detection result. The advantages and validity of the proposed scheme are verified based on the Tennessee Eastman process.
doi_str_mv 10.1109/TIM.2022.3199239
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2706891644</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9858165</ieee_id><sourcerecordid>2706891644</sourcerecordid><originalsourceid>FETCH-LOGICAL-c221t-e6b876fc8a475137071187d92c046590f4f644e3942ab7599738144bbedf7b2a3</originalsourceid><addsrcrecordid>eNo9kU1rGzEQhkVpoa6Te6AXQc_rSFqttDq6dpOYOs13r4tWO5vIUVaupA345-SfVsYhp2Hgfd5heBA6oWRGKVGn96vLGSOMzUqqFCvVJzShVSULJQT7jCaE0LpQvBJf0bcYN4QQKbicoLc5_uNfweGbUTubdsUtOJ2gw6vB2K2FIeEzPbqEl5DAJOsHfAnpyXf4p445lveFHvxgjXb4rw42w3g-aLeLNmI9dPj36FyrzXOxBts6CHhpXyE8wmAA9z7gtc5LcZd5yEe7MaZc4vB18AZihHiEvvTaRTh-n1P0cPbrfnFRrK_OV4v5ujCM0VSAaGspelNrLitaSiIprWWnmCFcVIr0vBecQ6k4062slJJlTTlvW-h62TJdTtGPQ-82-H8jxNRs_BjyJ7Fhkoha0cznFDmkTPAxBuibbbAvOuwaSpq9iCaLaPYimncRGfl-QCwAfMRVXdVUVOV_69yFSw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2706891644</pqid></control><display><type>article</type><title>A Novel Quality-Related Incipient Fault Detection Method Based on Canonical Variate Analysis and Kullback-Leibler Divergence for Large-Scale Industrial Processes</title><source>IEEE/IET Electronic Library (IEL)</source><creator>Dong, Jie ; Jiang, Lingzhi ; Zhang, Chi ; Peng, Kaixiang</creator><creatorcontrib>Dong, Jie ; Jiang, Lingzhi ; Zhang, Chi ; Peng, Kaixiang</creatorcontrib><description>Quality-related fault detection is an effective way to ensure the stability of product quality and the safety of industrial processes. Quality abnormality is often caused by incipient faults, which propagate through the connectivity path among the equipment and subsystems, and eventually become significant faults that affect product quality and production efficiency. In this article, a quality-related incipient fault detection method for large-scale industrial process is proposed. First, a fault-relevant variable selection strategy based on Kullback-Leibler divergence (KLD) is proposed to obtain the optimal variable subsets of quality-related and quality-unrelated faults. Second, canonical variate analysis is applied to estimate the canonical variables from the collected processes data. Third, considering that KLD has a high sensitivity to incipient faults, it is used to quantify the dissimilarity between the distributions of canonical vectors before and after fault occurs. Finally, Bayesian inference is employed to fuse the detection results of all sub-blocks to get an intuitive global detection result. The advantages and validity of the proposed scheme are verified based on the Tennessee Eastman process.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2022.3199239</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Bayesian analysis ; Canonical variate analysis ; Correlation ; Fault detection ; Faults ; Feature extraction ; incipient fault ; Kullback–Leibler divergence (KLD) ; large-scale industrial processes ; Principal component analysis ; Process control ; Product design ; Product quality ; Quality assessment ; quality-related fault detection ; Statistical inference ; Subsystems</subject><ispartof>IEEE transactions on instrumentation and measurement, 2022, Vol.71, p.1-10</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c221t-e6b876fc8a475137071187d92c046590f4f644e3942ab7599738144bbedf7b2a3</citedby><cites>FETCH-LOGICAL-c221t-e6b876fc8a475137071187d92c046590f4f644e3942ab7599738144bbedf7b2a3</cites><orcidid>0000-0001-7585-6637 ; 0000-0003-3929-8660 ; 0000-0003-1047-451X ; 0000-0001-8314-3047</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9858165$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4009,27902,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9858165$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dong, Jie</creatorcontrib><creatorcontrib>Jiang, Lingzhi</creatorcontrib><creatorcontrib>Zhang, Chi</creatorcontrib><creatorcontrib>Peng, Kaixiang</creatorcontrib><title>A Novel Quality-Related Incipient Fault Detection Method Based on Canonical Variate Analysis and Kullback-Leibler Divergence for Large-Scale Industrial Processes</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>Quality-related fault detection is an effective way to ensure the stability of product quality and the safety of industrial processes. Quality abnormality is often caused by incipient faults, which propagate through the connectivity path among the equipment and subsystems, and eventually become significant faults that affect product quality and production efficiency. In this article, a quality-related incipient fault detection method for large-scale industrial process is proposed. First, a fault-relevant variable selection strategy based on Kullback-Leibler divergence (KLD) is proposed to obtain the optimal variable subsets of quality-related and quality-unrelated faults. Second, canonical variate analysis is applied to estimate the canonical variables from the collected processes data. Third, considering that KLD has a high sensitivity to incipient faults, it is used to quantify the dissimilarity between the distributions of canonical vectors before and after fault occurs. Finally, Bayesian inference is employed to fuse the detection results of all sub-blocks to get an intuitive global detection result. The advantages and validity of the proposed scheme are verified based on the Tennessee Eastman process.</description><subject>Bayesian analysis</subject><subject>Canonical variate analysis</subject><subject>Correlation</subject><subject>Fault detection</subject><subject>Faults</subject><subject>Feature extraction</subject><subject>incipient fault</subject><subject>Kullback–Leibler divergence (KLD)</subject><subject>large-scale industrial processes</subject><subject>Principal component analysis</subject><subject>Process control</subject><subject>Product design</subject><subject>Product quality</subject><subject>Quality assessment</subject><subject>quality-related fault detection</subject><subject>Statistical inference</subject><subject>Subsystems</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kU1rGzEQhkVpoa6Te6AXQc_rSFqttDq6dpOYOs13r4tWO5vIUVaupA345-SfVsYhp2Hgfd5heBA6oWRGKVGn96vLGSOMzUqqFCvVJzShVSULJQT7jCaE0LpQvBJf0bcYN4QQKbicoLc5_uNfweGbUTubdsUtOJ2gw6vB2K2FIeEzPbqEl5DAJOsHfAnpyXf4p445lveFHvxgjXb4rw42w3g-aLeLNmI9dPj36FyrzXOxBts6CHhpXyE8wmAA9z7gtc5LcZd5yEe7MaZc4vB18AZihHiEvvTaRTh-n1P0cPbrfnFRrK_OV4v5ujCM0VSAaGspelNrLitaSiIprWWnmCFcVIr0vBecQ6k4062slJJlTTlvW-h62TJdTtGPQ-82-H8jxNRs_BjyJ7Fhkoha0cznFDmkTPAxBuibbbAvOuwaSpq9iCaLaPYimncRGfl-QCwAfMRVXdVUVOV_69yFSw</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Dong, Jie</creator><creator>Jiang, Lingzhi</creator><creator>Zhang, Chi</creator><creator>Peng, Kaixiang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7585-6637</orcidid><orcidid>https://orcid.org/0000-0003-3929-8660</orcidid><orcidid>https://orcid.org/0000-0003-1047-451X</orcidid><orcidid>https://orcid.org/0000-0001-8314-3047</orcidid></search><sort><creationdate>2022</creationdate><title>A Novel Quality-Related Incipient Fault Detection Method Based on Canonical Variate Analysis and Kullback-Leibler Divergence for Large-Scale Industrial Processes</title><author>Dong, Jie ; Jiang, Lingzhi ; Zhang, Chi ; Peng, Kaixiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c221t-e6b876fc8a475137071187d92c046590f4f644e3942ab7599738144bbedf7b2a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bayesian analysis</topic><topic>Canonical variate analysis</topic><topic>Correlation</topic><topic>Fault detection</topic><topic>Faults</topic><topic>Feature extraction</topic><topic>incipient fault</topic><topic>Kullback–Leibler divergence (KLD)</topic><topic>large-scale industrial processes</topic><topic>Principal component analysis</topic><topic>Process control</topic><topic>Product design</topic><topic>Product quality</topic><topic>Quality assessment</topic><topic>quality-related fault detection</topic><topic>Statistical inference</topic><topic>Subsystems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Jie</creatorcontrib><creatorcontrib>Jiang, Lingzhi</creatorcontrib><creatorcontrib>Zhang, Chi</creatorcontrib><creatorcontrib>Peng, Kaixiang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dong, Jie</au><au>Jiang, Lingzhi</au><au>Zhang, Chi</au><au>Peng, Kaixiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Quality-Related Incipient Fault Detection Method Based on Canonical Variate Analysis and Kullback-Leibler Divergence for Large-Scale Industrial Processes</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2022</date><risdate>2022</risdate><volume>71</volume><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>Quality-related fault detection is an effective way to ensure the stability of product quality and the safety of industrial processes. Quality abnormality is often caused by incipient faults, which propagate through the connectivity path among the equipment and subsystems, and eventually become significant faults that affect product quality and production efficiency. In this article, a quality-related incipient fault detection method for large-scale industrial process is proposed. First, a fault-relevant variable selection strategy based on Kullback-Leibler divergence (KLD) is proposed to obtain the optimal variable subsets of quality-related and quality-unrelated faults. Second, canonical variate analysis is applied to estimate the canonical variables from the collected processes data. Third, considering that KLD has a high sensitivity to incipient faults, it is used to quantify the dissimilarity between the distributions of canonical vectors before and after fault occurs. Finally, Bayesian inference is employed to fuse the detection results of all sub-blocks to get an intuitive global detection result. The advantages and validity of the proposed scheme are verified based on the Tennessee Eastman process.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2022.3199239</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7585-6637</orcidid><orcidid>https://orcid.org/0000-0003-3929-8660</orcidid><orcidid>https://orcid.org/0000-0003-1047-451X</orcidid><orcidid>https://orcid.org/0000-0001-8314-3047</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9456
ispartof IEEE transactions on instrumentation and measurement, 2022, Vol.71, p.1-10
issn 0018-9456
1557-9662
language eng
recordid cdi_proquest_journals_2706891644
source IEEE/IET Electronic Library (IEL)
subjects Bayesian analysis
Canonical variate analysis
Correlation
Fault detection
Faults
Feature extraction
incipient fault
Kullback–Leibler divergence (KLD)
large-scale industrial processes
Principal component analysis
Process control
Product design
Product quality
Quality assessment
quality-related fault detection
Statistical inference
Subsystems
title A Novel Quality-Related Incipient Fault Detection Method Based on Canonical Variate Analysis and Kullback-Leibler Divergence for Large-Scale Industrial Processes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T19%3A46%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Quality-Related%20Incipient%20Fault%20Detection%20Method%20Based%20on%20Canonical%20Variate%20Analysis%20and%20Kullback-Leibler%20Divergence%20for%20Large-Scale%20Industrial%20Processes&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Dong,%20Jie&rft.date=2022&rft.volume=71&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2022.3199239&rft_dat=%3Cproquest_RIE%3E2706891644%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2706891644&rft_id=info:pmid/&rft_ieee_id=9858165&rfr_iscdi=true