Three-Dimensional Musculoskeletal Model of the Lower Extremity: Integration of Gait Analysis Data with Finite Element Analysis
Purpose The human lower extremity is an indispensable system for generating walking and movement. This important system may fail due to joint diseases or bone fractures. This study proposes a human musculoskeletal lower extremity model to calculate its deformation and stress distribution by integrat...
Gespeichert in:
Veröffentlicht in: | Journal of medical and biological engineering 2022, Vol.42 (4), p.436-444 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 444 |
---|---|
container_issue | 4 |
container_start_page | 436 |
container_title | Journal of medical and biological engineering |
container_volume | 42 |
creator | Shih, Kao-Shang Hsu, Ching-Chi |
description | Purpose
The human lower extremity is an indispensable system for generating walking and movement. This important system may fail due to joint diseases or bone fractures. This study proposes a human musculoskeletal lower extremity model to calculate its deformation and stress distribution by integrating gait analysis data and finite element analysis.
Methods
The gait analysis data, which include bone and joint angles, muscle forces, and ground reaction forces, were obtained from a past study and used as the input data in the lower extremity finite element model.
Results
The full–field deformation and stress could be calculated and obtained from the musculoskeletal finite element model of the lower extremity with different gait postures. The deformation of the musculoskeletal models satisfactorily mirrored the natural movements of the human lower extremity. Additionally, the high bone stress regions of the musculoskeletal models should be monitored due to the high risk of bone fractures.
Conclusion
The human lower extremity model with realistic loading and bounding conditions was successfully developed through the integration of gait analysis and the finite element method. This computational technique could be applied to investigate the effects of various lower extremity postures on the biomechanical mechanism of the human lower extremity. |
doi_str_mv | 10.1007/s40846-022-00734-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2706754984</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2706754984</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-4db68187c4813bf9988f23926e960f26cdb144e8f5c1ed9cbf5b57771d623f033</originalsourceid><addsrcrecordid>eNp9kEtLQzEQhYMoWLR_wFXAdTSvm4c70aqFihtdh_uY2OjtvZqkaDf-dlMruHM2w4HvnBkOQieMnjFK9XmS1EhFKOekSCGJ2EMTzqwlUld6H02YopZQa6pDNE3phZYRVilmJujrcRkByHVYwZDCONQ9vl-ndt2P6RV6yFs9dtDj0eO8BLwYPyDi2WeOsAp5c4HnQ4bnWOfi3TK3dcj4ssRsUkj4us41_gh5iW_CEDLgWQ_l0B9xjA583SeY_u4j9HQze7y6I4uH2_nV5YK0XNpMZNcow4xupWGi8dYa47mwXIFV1HPVdg2TEoyvWgadbRtfNZXWmnWKC0-FOEKnu9y3OL6vIWX3Mq5jeSI5rqnSlbRGForvqDaOKUXw7i2GVR03jlG3rdrtqnalavdTtdtGi50pFXh4hvgX_Y_rG4nfgik</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2706754984</pqid></control><display><type>article</type><title>Three-Dimensional Musculoskeletal Model of the Lower Extremity: Integration of Gait Analysis Data with Finite Element Analysis</title><source>Springer Nature - Complete Springer Journals</source><creator>Shih, Kao-Shang ; Hsu, Ching-Chi</creator><creatorcontrib>Shih, Kao-Shang ; Hsu, Ching-Chi</creatorcontrib><description>Purpose
The human lower extremity is an indispensable system for generating walking and movement. This important system may fail due to joint diseases or bone fractures. This study proposes a human musculoskeletal lower extremity model to calculate its deformation and stress distribution by integrating gait analysis data and finite element analysis.
Methods
The gait analysis data, which include bone and joint angles, muscle forces, and ground reaction forces, were obtained from a past study and used as the input data in the lower extremity finite element model.
Results
The full–field deformation and stress could be calculated and obtained from the musculoskeletal finite element model of the lower extremity with different gait postures. The deformation of the musculoskeletal models satisfactorily mirrored the natural movements of the human lower extremity. Additionally, the high bone stress regions of the musculoskeletal models should be monitored due to the high risk of bone fractures.
Conclusion
The human lower extremity model with realistic loading and bounding conditions was successfully developed through the integration of gait analysis and the finite element method. This computational technique could be applied to investigate the effects of various lower extremity postures on the biomechanical mechanism of the human lower extremity.</description><identifier>ISSN: 1609-0985</identifier><identifier>EISSN: 2199-4757</identifier><identifier>DOI: 10.1007/s40846-022-00734-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Biological Techniques ; Biomechanics ; Biomedical and Life Sciences ; Biomedical Engineering and Bioengineering ; Biomedical Engineering/Biotechnology ; Biomedicine ; Computer applications ; Data analysis ; Finite element analysis ; Finite element method ; Fractures ; Gait ; Human motion ; Integration ; Joint diseases ; Joints (anatomy) ; Mathematical models ; Mechanical loading ; Muscles ; Original Article ; Regenerative Medicine/Tissue Engineering ; Stress distribution ; Three dimensional models</subject><ispartof>Journal of medical and biological engineering, 2022, Vol.42 (4), p.436-444</ispartof><rights>Taiwanese Society of Biomedical Engineering 2022</rights><rights>Taiwanese Society of Biomedical Engineering 2022.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-4db68187c4813bf9988f23926e960f26cdb144e8f5c1ed9cbf5b57771d623f033</citedby><cites>FETCH-LOGICAL-c249t-4db68187c4813bf9988f23926e960f26cdb144e8f5c1ed9cbf5b57771d623f033</cites><orcidid>0000-0003-2641-7923</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40846-022-00734-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40846-022-00734-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Shih, Kao-Shang</creatorcontrib><creatorcontrib>Hsu, Ching-Chi</creatorcontrib><title>Three-Dimensional Musculoskeletal Model of the Lower Extremity: Integration of Gait Analysis Data with Finite Element Analysis</title><title>Journal of medical and biological engineering</title><addtitle>J. Med. Biol. Eng</addtitle><description>Purpose
The human lower extremity is an indispensable system for generating walking and movement. This important system may fail due to joint diseases or bone fractures. This study proposes a human musculoskeletal lower extremity model to calculate its deformation and stress distribution by integrating gait analysis data and finite element analysis.
Methods
The gait analysis data, which include bone and joint angles, muscle forces, and ground reaction forces, were obtained from a past study and used as the input data in the lower extremity finite element model.
Results
The full–field deformation and stress could be calculated and obtained from the musculoskeletal finite element model of the lower extremity with different gait postures. The deformation of the musculoskeletal models satisfactorily mirrored the natural movements of the human lower extremity. Additionally, the high bone stress regions of the musculoskeletal models should be monitored due to the high risk of bone fractures.
Conclusion
The human lower extremity model with realistic loading and bounding conditions was successfully developed through the integration of gait analysis and the finite element method. This computational technique could be applied to investigate the effects of various lower extremity postures on the biomechanical mechanism of the human lower extremity.</description><subject>Biological Techniques</subject><subject>Biomechanics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Biomedicine</subject><subject>Computer applications</subject><subject>Data analysis</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Fractures</subject><subject>Gait</subject><subject>Human motion</subject><subject>Integration</subject><subject>Joint diseases</subject><subject>Joints (anatomy)</subject><subject>Mathematical models</subject><subject>Mechanical loading</subject><subject>Muscles</subject><subject>Original Article</subject><subject>Regenerative Medicine/Tissue Engineering</subject><subject>Stress distribution</subject><subject>Three dimensional models</subject><issn>1609-0985</issn><issn>2199-4757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLQzEQhYMoWLR_wFXAdTSvm4c70aqFihtdh_uY2OjtvZqkaDf-dlMruHM2w4HvnBkOQieMnjFK9XmS1EhFKOekSCGJ2EMTzqwlUld6H02YopZQa6pDNE3phZYRVilmJujrcRkByHVYwZDCONQ9vl-ndt2P6RV6yFs9dtDj0eO8BLwYPyDi2WeOsAp5c4HnQ4bnWOfi3TK3dcj4ssRsUkj4us41_gh5iW_CEDLgWQ_l0B9xjA583SeY_u4j9HQze7y6I4uH2_nV5YK0XNpMZNcow4xupWGi8dYa47mwXIFV1HPVdg2TEoyvWgadbRtfNZXWmnWKC0-FOEKnu9y3OL6vIWX3Mq5jeSI5rqnSlbRGForvqDaOKUXw7i2GVR03jlG3rdrtqnalavdTtdtGi50pFXh4hvgX_Y_rG4nfgik</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Shih, Kao-Shang</creator><creator>Hsu, Ching-Chi</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><orcidid>https://orcid.org/0000-0003-2641-7923</orcidid></search><sort><creationdate>2022</creationdate><title>Three-Dimensional Musculoskeletal Model of the Lower Extremity: Integration of Gait Analysis Data with Finite Element Analysis</title><author>Shih, Kao-Shang ; Hsu, Ching-Chi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-4db68187c4813bf9988f23926e960f26cdb144e8f5c1ed9cbf5b57771d623f033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biological Techniques</topic><topic>Biomechanics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Biomedicine</topic><topic>Computer applications</topic><topic>Data analysis</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Fractures</topic><topic>Gait</topic><topic>Human motion</topic><topic>Integration</topic><topic>Joint diseases</topic><topic>Joints (anatomy)</topic><topic>Mathematical models</topic><topic>Mechanical loading</topic><topic>Muscles</topic><topic>Original Article</topic><topic>Regenerative Medicine/Tissue Engineering</topic><topic>Stress distribution</topic><topic>Three dimensional models</topic><toplevel>online_resources</toplevel><creatorcontrib>Shih, Kao-Shang</creatorcontrib><creatorcontrib>Hsu, Ching-Chi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><jtitle>Journal of medical and biological engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shih, Kao-Shang</au><au>Hsu, Ching-Chi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-Dimensional Musculoskeletal Model of the Lower Extremity: Integration of Gait Analysis Data with Finite Element Analysis</atitle><jtitle>Journal of medical and biological engineering</jtitle><stitle>J. Med. Biol. Eng</stitle><date>2022</date><risdate>2022</risdate><volume>42</volume><issue>4</issue><spage>436</spage><epage>444</epage><pages>436-444</pages><issn>1609-0985</issn><eissn>2199-4757</eissn><abstract>Purpose
The human lower extremity is an indispensable system for generating walking and movement. This important system may fail due to joint diseases or bone fractures. This study proposes a human musculoskeletal lower extremity model to calculate its deformation and stress distribution by integrating gait analysis data and finite element analysis.
Methods
The gait analysis data, which include bone and joint angles, muscle forces, and ground reaction forces, were obtained from a past study and used as the input data in the lower extremity finite element model.
Results
The full–field deformation and stress could be calculated and obtained from the musculoskeletal finite element model of the lower extremity with different gait postures. The deformation of the musculoskeletal models satisfactorily mirrored the natural movements of the human lower extremity. Additionally, the high bone stress regions of the musculoskeletal models should be monitored due to the high risk of bone fractures.
Conclusion
The human lower extremity model with realistic loading and bounding conditions was successfully developed through the integration of gait analysis and the finite element method. This computational technique could be applied to investigate the effects of various lower extremity postures on the biomechanical mechanism of the human lower extremity.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s40846-022-00734-3</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2641-7923</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1609-0985 |
ispartof | Journal of medical and biological engineering, 2022, Vol.42 (4), p.436-444 |
issn | 1609-0985 2199-4757 |
language | eng |
recordid | cdi_proquest_journals_2706754984 |
source | Springer Nature - Complete Springer Journals |
subjects | Biological Techniques Biomechanics Biomedical and Life Sciences Biomedical Engineering and Bioengineering Biomedical Engineering/Biotechnology Biomedicine Computer applications Data analysis Finite element analysis Finite element method Fractures Gait Human motion Integration Joint diseases Joints (anatomy) Mathematical models Mechanical loading Muscles Original Article Regenerative Medicine/Tissue Engineering Stress distribution Three dimensional models |
title | Three-Dimensional Musculoskeletal Model of the Lower Extremity: Integration of Gait Analysis Data with Finite Element Analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T03%3A52%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-Dimensional%20Musculoskeletal%20Model%20of%20the%20Lower%20Extremity:%20Integration%20of%20Gait%20Analysis%20Data%20with%20Finite%20Element%20Analysis&rft.jtitle=Journal%20of%20medical%20and%20biological%20engineering&rft.au=Shih,%20Kao-Shang&rft.date=2022&rft.volume=42&rft.issue=4&rft.spage=436&rft.epage=444&rft.pages=436-444&rft.issn=1609-0985&rft.eissn=2199-4757&rft_id=info:doi/10.1007/s40846-022-00734-3&rft_dat=%3Cproquest_cross%3E2706754984%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2706754984&rft_id=info:pmid/&rfr_iscdi=true |