Three-Dimensional Musculoskeletal Model of the Lower Extremity: Integration of Gait Analysis Data with Finite Element Analysis

Purpose The human lower extremity is an indispensable system for generating walking and movement. This important system may fail due to joint diseases or bone fractures. This study proposes a human musculoskeletal lower extremity model to calculate its deformation and stress distribution by integrat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of medical and biological engineering 2022, Vol.42 (4), p.436-444
Hauptverfasser: Shih, Kao-Shang, Hsu, Ching-Chi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 444
container_issue 4
container_start_page 436
container_title Journal of medical and biological engineering
container_volume 42
creator Shih, Kao-Shang
Hsu, Ching-Chi
description Purpose The human lower extremity is an indispensable system for generating walking and movement. This important system may fail due to joint diseases or bone fractures. This study proposes a human musculoskeletal lower extremity model to calculate its deformation and stress distribution by integrating gait analysis data and finite element analysis. Methods The gait analysis data, which include bone and joint angles, muscle forces, and ground reaction forces, were obtained from a past study and used as the input data in the lower extremity finite element model. Results The full–field deformation and stress could be calculated and obtained from the musculoskeletal finite element model of the lower extremity with different gait postures. The deformation of the musculoskeletal models satisfactorily mirrored the natural movements of the human lower extremity. Additionally, the high bone stress regions of the musculoskeletal models should be monitored due to the high risk of bone fractures. Conclusion The human lower extremity model with realistic loading and bounding conditions was successfully developed through the integration of gait analysis and the finite element method. This computational technique could be applied to investigate the effects of various lower extremity postures on the biomechanical mechanism of the human lower extremity.
doi_str_mv 10.1007/s40846-022-00734-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2706754984</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2706754984</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-4db68187c4813bf9988f23926e960f26cdb144e8f5c1ed9cbf5b57771d623f033</originalsourceid><addsrcrecordid>eNp9kEtLQzEQhYMoWLR_wFXAdTSvm4c70aqFihtdh_uY2OjtvZqkaDf-dlMruHM2w4HvnBkOQieMnjFK9XmS1EhFKOekSCGJ2EMTzqwlUld6H02YopZQa6pDNE3phZYRVilmJujrcRkByHVYwZDCONQ9vl-ndt2P6RV6yFs9dtDj0eO8BLwYPyDi2WeOsAp5c4HnQ4bnWOfi3TK3dcj4ssRsUkj4us41_gh5iW_CEDLgWQ_l0B9xjA583SeY_u4j9HQze7y6I4uH2_nV5YK0XNpMZNcow4xupWGi8dYa47mwXIFV1HPVdg2TEoyvWgadbRtfNZXWmnWKC0-FOEKnu9y3OL6vIWX3Mq5jeSI5rqnSlbRGForvqDaOKUXw7i2GVR03jlG3rdrtqnalavdTtdtGi50pFXh4hvgX_Y_rG4nfgik</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2706754984</pqid></control><display><type>article</type><title>Three-Dimensional Musculoskeletal Model of the Lower Extremity: Integration of Gait Analysis Data with Finite Element Analysis</title><source>Springer Nature - Complete Springer Journals</source><creator>Shih, Kao-Shang ; Hsu, Ching-Chi</creator><creatorcontrib>Shih, Kao-Shang ; Hsu, Ching-Chi</creatorcontrib><description>Purpose The human lower extremity is an indispensable system for generating walking and movement. This important system may fail due to joint diseases or bone fractures. This study proposes a human musculoskeletal lower extremity model to calculate its deformation and stress distribution by integrating gait analysis data and finite element analysis. Methods The gait analysis data, which include bone and joint angles, muscle forces, and ground reaction forces, were obtained from a past study and used as the input data in the lower extremity finite element model. Results The full–field deformation and stress could be calculated and obtained from the musculoskeletal finite element model of the lower extremity with different gait postures. The deformation of the musculoskeletal models satisfactorily mirrored the natural movements of the human lower extremity. Additionally, the high bone stress regions of the musculoskeletal models should be monitored due to the high risk of bone fractures. Conclusion The human lower extremity model with realistic loading and bounding conditions was successfully developed through the integration of gait analysis and the finite element method. This computational technique could be applied to investigate the effects of various lower extremity postures on the biomechanical mechanism of the human lower extremity.</description><identifier>ISSN: 1609-0985</identifier><identifier>EISSN: 2199-4757</identifier><identifier>DOI: 10.1007/s40846-022-00734-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Biological Techniques ; Biomechanics ; Biomedical and Life Sciences ; Biomedical Engineering and Bioengineering ; Biomedical Engineering/Biotechnology ; Biomedicine ; Computer applications ; Data analysis ; Finite element analysis ; Finite element method ; Fractures ; Gait ; Human motion ; Integration ; Joint diseases ; Joints (anatomy) ; Mathematical models ; Mechanical loading ; Muscles ; Original Article ; Regenerative Medicine/Tissue Engineering ; Stress distribution ; Three dimensional models</subject><ispartof>Journal of medical and biological engineering, 2022, Vol.42 (4), p.436-444</ispartof><rights>Taiwanese Society of Biomedical Engineering 2022</rights><rights>Taiwanese Society of Biomedical Engineering 2022.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-4db68187c4813bf9988f23926e960f26cdb144e8f5c1ed9cbf5b57771d623f033</citedby><cites>FETCH-LOGICAL-c249t-4db68187c4813bf9988f23926e960f26cdb144e8f5c1ed9cbf5b57771d623f033</cites><orcidid>0000-0003-2641-7923</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40846-022-00734-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40846-022-00734-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Shih, Kao-Shang</creatorcontrib><creatorcontrib>Hsu, Ching-Chi</creatorcontrib><title>Three-Dimensional Musculoskeletal Model of the Lower Extremity: Integration of Gait Analysis Data with Finite Element Analysis</title><title>Journal of medical and biological engineering</title><addtitle>J. Med. Biol. Eng</addtitle><description>Purpose The human lower extremity is an indispensable system for generating walking and movement. This important system may fail due to joint diseases or bone fractures. This study proposes a human musculoskeletal lower extremity model to calculate its deformation and stress distribution by integrating gait analysis data and finite element analysis. Methods The gait analysis data, which include bone and joint angles, muscle forces, and ground reaction forces, were obtained from a past study and used as the input data in the lower extremity finite element model. Results The full–field deformation and stress could be calculated and obtained from the musculoskeletal finite element model of the lower extremity with different gait postures. The deformation of the musculoskeletal models satisfactorily mirrored the natural movements of the human lower extremity. Additionally, the high bone stress regions of the musculoskeletal models should be monitored due to the high risk of bone fractures. Conclusion The human lower extremity model with realistic loading and bounding conditions was successfully developed through the integration of gait analysis and the finite element method. This computational technique could be applied to investigate the effects of various lower extremity postures on the biomechanical mechanism of the human lower extremity.</description><subject>Biological Techniques</subject><subject>Biomechanics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Biomedicine</subject><subject>Computer applications</subject><subject>Data analysis</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Fractures</subject><subject>Gait</subject><subject>Human motion</subject><subject>Integration</subject><subject>Joint diseases</subject><subject>Joints (anatomy)</subject><subject>Mathematical models</subject><subject>Mechanical loading</subject><subject>Muscles</subject><subject>Original Article</subject><subject>Regenerative Medicine/Tissue Engineering</subject><subject>Stress distribution</subject><subject>Three dimensional models</subject><issn>1609-0985</issn><issn>2199-4757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLQzEQhYMoWLR_wFXAdTSvm4c70aqFihtdh_uY2OjtvZqkaDf-dlMruHM2w4HvnBkOQieMnjFK9XmS1EhFKOekSCGJ2EMTzqwlUld6H02YopZQa6pDNE3phZYRVilmJujrcRkByHVYwZDCONQ9vl-ndt2P6RV6yFs9dtDj0eO8BLwYPyDi2WeOsAp5c4HnQ4bnWOfi3TK3dcj4ssRsUkj4us41_gh5iW_CEDLgWQ_l0B9xjA583SeY_u4j9HQze7y6I4uH2_nV5YK0XNpMZNcow4xupWGi8dYa47mwXIFV1HPVdg2TEoyvWgadbRtfNZXWmnWKC0-FOEKnu9y3OL6vIWX3Mq5jeSI5rqnSlbRGForvqDaOKUXw7i2GVR03jlG3rdrtqnalavdTtdtGi50pFXh4hvgX_Y_rG4nfgik</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Shih, Kao-Shang</creator><creator>Hsu, Ching-Chi</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><orcidid>https://orcid.org/0000-0003-2641-7923</orcidid></search><sort><creationdate>2022</creationdate><title>Three-Dimensional Musculoskeletal Model of the Lower Extremity: Integration of Gait Analysis Data with Finite Element Analysis</title><author>Shih, Kao-Shang ; Hsu, Ching-Chi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-4db68187c4813bf9988f23926e960f26cdb144e8f5c1ed9cbf5b57771d623f033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biological Techniques</topic><topic>Biomechanics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Biomedicine</topic><topic>Computer applications</topic><topic>Data analysis</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Fractures</topic><topic>Gait</topic><topic>Human motion</topic><topic>Integration</topic><topic>Joint diseases</topic><topic>Joints (anatomy)</topic><topic>Mathematical models</topic><topic>Mechanical loading</topic><topic>Muscles</topic><topic>Original Article</topic><topic>Regenerative Medicine/Tissue Engineering</topic><topic>Stress distribution</topic><topic>Three dimensional models</topic><toplevel>online_resources</toplevel><creatorcontrib>Shih, Kao-Shang</creatorcontrib><creatorcontrib>Hsu, Ching-Chi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><jtitle>Journal of medical and biological engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shih, Kao-Shang</au><au>Hsu, Ching-Chi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-Dimensional Musculoskeletal Model of the Lower Extremity: Integration of Gait Analysis Data with Finite Element Analysis</atitle><jtitle>Journal of medical and biological engineering</jtitle><stitle>J. Med. Biol. Eng</stitle><date>2022</date><risdate>2022</risdate><volume>42</volume><issue>4</issue><spage>436</spage><epage>444</epage><pages>436-444</pages><issn>1609-0985</issn><eissn>2199-4757</eissn><abstract>Purpose The human lower extremity is an indispensable system for generating walking and movement. This important system may fail due to joint diseases or bone fractures. This study proposes a human musculoskeletal lower extremity model to calculate its deformation and stress distribution by integrating gait analysis data and finite element analysis. Methods The gait analysis data, which include bone and joint angles, muscle forces, and ground reaction forces, were obtained from a past study and used as the input data in the lower extremity finite element model. Results The full–field deformation and stress could be calculated and obtained from the musculoskeletal finite element model of the lower extremity with different gait postures. The deformation of the musculoskeletal models satisfactorily mirrored the natural movements of the human lower extremity. Additionally, the high bone stress regions of the musculoskeletal models should be monitored due to the high risk of bone fractures. Conclusion The human lower extremity model with realistic loading and bounding conditions was successfully developed through the integration of gait analysis and the finite element method. This computational technique could be applied to investigate the effects of various lower extremity postures on the biomechanical mechanism of the human lower extremity.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s40846-022-00734-3</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2641-7923</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1609-0985
ispartof Journal of medical and biological engineering, 2022, Vol.42 (4), p.436-444
issn 1609-0985
2199-4757
language eng
recordid cdi_proquest_journals_2706754984
source Springer Nature - Complete Springer Journals
subjects Biological Techniques
Biomechanics
Biomedical and Life Sciences
Biomedical Engineering and Bioengineering
Biomedical Engineering/Biotechnology
Biomedicine
Computer applications
Data analysis
Finite element analysis
Finite element method
Fractures
Gait
Human motion
Integration
Joint diseases
Joints (anatomy)
Mathematical models
Mechanical loading
Muscles
Original Article
Regenerative Medicine/Tissue Engineering
Stress distribution
Three dimensional models
title Three-Dimensional Musculoskeletal Model of the Lower Extremity: Integration of Gait Analysis Data with Finite Element Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T03%3A52%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-Dimensional%20Musculoskeletal%20Model%20of%20the%20Lower%20Extremity:%20Integration%20of%20Gait%20Analysis%20Data%20with%20Finite%20Element%20Analysis&rft.jtitle=Journal%20of%20medical%20and%20biological%20engineering&rft.au=Shih,%20Kao-Shang&rft.date=2022&rft.volume=42&rft.issue=4&rft.spage=436&rft.epage=444&rft.pages=436-444&rft.issn=1609-0985&rft.eissn=2199-4757&rft_id=info:doi/10.1007/s40846-022-00734-3&rft_dat=%3Cproquest_cross%3E2706754984%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2706754984&rft_id=info:pmid/&rfr_iscdi=true