A high performance two-layer consensus architecture for blockchain-based IoT systems
We describe a two-layer architecture suitable for wide area IoT systems that use blockchain technology. The lower layer is comprised of several clusters in which nodes are interconnected with a number of virtual overlays which allow multiple consensus rounds that validate incoming data blocks to pro...
Gespeichert in:
Veröffentlicht in: | Peer-to-peer networking and applications 2022-09, Vol.15 (5), p.2444-2456 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2456 |
---|---|
container_issue | 5 |
container_start_page | 2444 |
container_title | Peer-to-peer networking and applications |
container_volume | 15 |
creator | Qushtom, Haytham Mišić, Jelena Mišić, Vojislav B. Chang, Xiaolin |
description | We describe a two-layer architecture suitable for wide area IoT systems that use blockchain technology. The lower layer is comprised of several clusters in which nodes are interconnected with a number of virtual overlays which allow multiple consensus rounds that validate incoming data blocks to proceed concurrently and without contention. Validated data blocks are then ordered by the upper layer cluster, a virtual cluster formed by nodes from lower layer clusters (one from each cluster), and linked in the replicated blockchain ledger. In each cluster, a modified Practical Byzantine Fault Tolerance (PBFT) protocol is used to achieve consensus. The use of layered architecture, virtual overlays, and multiple-leader capability lead to increased resiliency to consensus leader misbehavior as well as performance improvement over traditional PBFT, which are confirmed through a discrete time Markov chain (DTMC) model linked to an M/G/1 queuing model in a wide range of parameter values. |
doi_str_mv | 10.1007/s12083-022-01363-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2706510030</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2706510030</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-7560691002386d486d4e668389cbd1d08ec345595e127fea94911223dfe431063</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwB5gsMRvOduIkY1XxUakSS5gt17k0KW1c7EQo_x6XINgYrPPwvO-dHkJuOdxzgOwhcAG5ZCAEAy6VZOMZmfFCKqaSFM5__4m4JFch7AAUl6mYkXJBm3bb0CP62vmD6SzS_tOxvRnRU-u6gF0YAjXeNm2Pth880kjSzd7Zd9uYtmMbE7CiK1fSMIYeD-GaXNRmH_DmZ87J29NjuXxh69fn1XKxZlYkRc-yVIEq4v1C5qpKTg-VymVe2E3FK8jRyiRNixS5yGo0RVJwLoSsakwkByXn5G7qPXr3MWDo9c4NvosrtchApbFaQqTERFnvQvBY66NvD8aPmoM-2dOTPR3t6W97eowhOYVChLst-r_qf1Jf0gRx5w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2706510030</pqid></control><display><type>article</type><title>A high performance two-layer consensus architecture for blockchain-based IoT systems</title><source>Springer Nature - Complete Springer Journals</source><creator>Qushtom, Haytham ; Mišić, Jelena ; Mišić, Vojislav B. ; Chang, Xiaolin</creator><creatorcontrib>Qushtom, Haytham ; Mišić, Jelena ; Mišić, Vojislav B. ; Chang, Xiaolin</creatorcontrib><description>We describe a two-layer architecture suitable for wide area IoT systems that use blockchain technology. The lower layer is comprised of several clusters in which nodes are interconnected with a number of virtual overlays which allow multiple consensus rounds that validate incoming data blocks to proceed concurrently and without contention. Validated data blocks are then ordered by the upper layer cluster, a virtual cluster formed by nodes from lower layer clusters (one from each cluster), and linked in the replicated blockchain ledger. In each cluster, a modified Practical Byzantine Fault Tolerance (PBFT) protocol is used to achieve consensus. The use of layered architecture, virtual overlays, and multiple-leader capability lead to increased resiliency to consensus leader misbehavior as well as performance improvement over traditional PBFT, which are confirmed through a discrete time Markov chain (DTMC) model linked to an M/G/1 queuing model in a wide range of parameter values.</description><identifier>ISSN: 1936-6442</identifier><identifier>EISSN: 1936-6450</identifier><identifier>DOI: 10.1007/s12083-022-01363-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Blockchain ; Clusters ; Communications Engineering ; Computer Communication Networks ; Cryptography ; Engineering ; Fault tolerance ; Information Systems and Communication Service ; Internet of Things ; Markov chains ; Networks ; Nodes ; Privacy ; Protocol ; Queueing ; Reliability engineering ; Signal,Image and Speech Processing</subject><ispartof>Peer-to-peer networking and applications, 2022-09, Vol.15 (5), p.2444-2456</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-7560691002386d486d4e668389cbd1d08ec345595e127fea94911223dfe431063</citedby><cites>FETCH-LOGICAL-c249t-7560691002386d486d4e668389cbd1d08ec345595e127fea94911223dfe431063</cites><orcidid>0000-0001-7760-9920</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12083-022-01363-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12083-022-01363-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Qushtom, Haytham</creatorcontrib><creatorcontrib>Mišić, Jelena</creatorcontrib><creatorcontrib>Mišić, Vojislav B.</creatorcontrib><creatorcontrib>Chang, Xiaolin</creatorcontrib><title>A high performance two-layer consensus architecture for blockchain-based IoT systems</title><title>Peer-to-peer networking and applications</title><addtitle>Peer-to-Peer Netw. Appl</addtitle><description>We describe a two-layer architecture suitable for wide area IoT systems that use blockchain technology. The lower layer is comprised of several clusters in which nodes are interconnected with a number of virtual overlays which allow multiple consensus rounds that validate incoming data blocks to proceed concurrently and without contention. Validated data blocks are then ordered by the upper layer cluster, a virtual cluster formed by nodes from lower layer clusters (one from each cluster), and linked in the replicated blockchain ledger. In each cluster, a modified Practical Byzantine Fault Tolerance (PBFT) protocol is used to achieve consensus. The use of layered architecture, virtual overlays, and multiple-leader capability lead to increased resiliency to consensus leader misbehavior as well as performance improvement over traditional PBFT, which are confirmed through a discrete time Markov chain (DTMC) model linked to an M/G/1 queuing model in a wide range of parameter values.</description><subject>Blockchain</subject><subject>Clusters</subject><subject>Communications Engineering</subject><subject>Computer Communication Networks</subject><subject>Cryptography</subject><subject>Engineering</subject><subject>Fault tolerance</subject><subject>Information Systems and Communication Service</subject><subject>Internet of Things</subject><subject>Markov chains</subject><subject>Networks</subject><subject>Nodes</subject><subject>Privacy</subject><subject>Protocol</subject><subject>Queueing</subject><subject>Reliability engineering</subject><subject>Signal,Image and Speech Processing</subject><issn>1936-6442</issn><issn>1936-6450</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kD1PwzAQhi0EEqXwB5gsMRvOduIkY1XxUakSS5gt17k0KW1c7EQo_x6XINgYrPPwvO-dHkJuOdxzgOwhcAG5ZCAEAy6VZOMZmfFCKqaSFM5__4m4JFch7AAUl6mYkXJBm3bb0CP62vmD6SzS_tOxvRnRU-u6gF0YAjXeNm2Pth880kjSzd7Zd9uYtmMbE7CiK1fSMIYeD-GaXNRmH_DmZ87J29NjuXxh69fn1XKxZlYkRc-yVIEq4v1C5qpKTg-VymVe2E3FK8jRyiRNixS5yGo0RVJwLoSsakwkByXn5G7qPXr3MWDo9c4NvosrtchApbFaQqTERFnvQvBY66NvD8aPmoM-2dOTPR3t6W97eowhOYVChLst-r_qf1Jf0gRx5w</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Qushtom, Haytham</creator><creator>Mišić, Jelena</creator><creator>Mišić, Vojislav B.</creator><creator>Chang, Xiaolin</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-7760-9920</orcidid></search><sort><creationdate>20220901</creationdate><title>A high performance two-layer consensus architecture for blockchain-based IoT systems</title><author>Qushtom, Haytham ; Mišić, Jelena ; Mišić, Vojislav B. ; Chang, Xiaolin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-7560691002386d486d4e668389cbd1d08ec345595e127fea94911223dfe431063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Blockchain</topic><topic>Clusters</topic><topic>Communications Engineering</topic><topic>Computer Communication Networks</topic><topic>Cryptography</topic><topic>Engineering</topic><topic>Fault tolerance</topic><topic>Information Systems and Communication Service</topic><topic>Internet of Things</topic><topic>Markov chains</topic><topic>Networks</topic><topic>Nodes</topic><topic>Privacy</topic><topic>Protocol</topic><topic>Queueing</topic><topic>Reliability engineering</topic><topic>Signal,Image and Speech Processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qushtom, Haytham</creatorcontrib><creatorcontrib>Mišić, Jelena</creatorcontrib><creatorcontrib>Mišić, Vojislav B.</creatorcontrib><creatorcontrib>Chang, Xiaolin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Peer-to-peer networking and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qushtom, Haytham</au><au>Mišić, Jelena</au><au>Mišić, Vojislav B.</au><au>Chang, Xiaolin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A high performance two-layer consensus architecture for blockchain-based IoT systems</atitle><jtitle>Peer-to-peer networking and applications</jtitle><stitle>Peer-to-Peer Netw. Appl</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>15</volume><issue>5</issue><spage>2444</spage><epage>2456</epage><pages>2444-2456</pages><issn>1936-6442</issn><eissn>1936-6450</eissn><abstract>We describe a two-layer architecture suitable for wide area IoT systems that use blockchain technology. The lower layer is comprised of several clusters in which nodes are interconnected with a number of virtual overlays which allow multiple consensus rounds that validate incoming data blocks to proceed concurrently and without contention. Validated data blocks are then ordered by the upper layer cluster, a virtual cluster formed by nodes from lower layer clusters (one from each cluster), and linked in the replicated blockchain ledger. In each cluster, a modified Practical Byzantine Fault Tolerance (PBFT) protocol is used to achieve consensus. The use of layered architecture, virtual overlays, and multiple-leader capability lead to increased resiliency to consensus leader misbehavior as well as performance improvement over traditional PBFT, which are confirmed through a discrete time Markov chain (DTMC) model linked to an M/G/1 queuing model in a wide range of parameter values.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s12083-022-01363-y</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-7760-9920</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-6442 |
ispartof | Peer-to-peer networking and applications, 2022-09, Vol.15 (5), p.2444-2456 |
issn | 1936-6442 1936-6450 |
language | eng |
recordid | cdi_proquest_journals_2706510030 |
source | Springer Nature - Complete Springer Journals |
subjects | Blockchain Clusters Communications Engineering Computer Communication Networks Cryptography Engineering Fault tolerance Information Systems and Communication Service Internet of Things Markov chains Networks Nodes Privacy Protocol Queueing Reliability engineering Signal,Image and Speech Processing |
title | A high performance two-layer consensus architecture for blockchain-based IoT systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T23%3A29%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20high%20performance%20two-layer%20consensus%20architecture%20for%20blockchain-based%20IoT%20systems&rft.jtitle=Peer-to-peer%20networking%20and%20applications&rft.au=Qushtom,%20Haytham&rft.date=2022-09-01&rft.volume=15&rft.issue=5&rft.spage=2444&rft.epage=2456&rft.pages=2444-2456&rft.issn=1936-6442&rft.eissn=1936-6450&rft_id=info:doi/10.1007/s12083-022-01363-y&rft_dat=%3Cproquest_cross%3E2706510030%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2706510030&rft_id=info:pmid/&rfr_iscdi=true |