An integrated panel data approach to modelling economic growth
Empirical growth analysis is plagued with three problems – variable selection, parameter heterogeneity and cross-sectional dependence – which are addressed independently from each other in most studies. This study is to propose an integrated framework that allows for parameter heterogeneity and cros...
Gespeichert in:
Veröffentlicht in: | Journal of econometrics 2022-06, Vol.228 (2), p.379-397 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 397 |
---|---|
container_issue | 2 |
container_start_page | 379 |
container_title | Journal of econometrics |
container_volume | 228 |
creator | Feng, Guohua Gao, Jiti Peng, Bin |
description | Empirical growth analysis is plagued with three problems – variable selection, parameter heterogeneity and cross-sectional dependence – which are addressed independently from each other in most studies. This study is to propose an integrated framework that allows for parameter heterogeneity and cross-sectional error dependence, while simultaneously performing variable selection. We derive the asymptotic properties of the estimator, and apply the framework to a dataset of 89 countries over the period from 1960 to 2014. Our results support the “optimistic” conclusion of Sala-I-Martin (1997), and also reveal some cross-country patterns not found previously. |
doi_str_mv | 10.1016/j.jeconom.2020.09.009 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2706457770</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304407621000014</els_id><sourcerecordid>2706457770</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-3513a8d0fe4331c5400d27ba66820ea685e33f23f382545312b76ade964835f93</originalsourceid><addsrcrecordid>eNqFkE1LwzAYx4MoOKcfQQh4bn2SNEl7UcbwDQZe9Byy5OnW0jUzzRS_vR3d3dNz-b89P0JuGeQMmLpv8xZd6MMu58AhhyoHqM7IjJWaZ6qs5DmZgYAiK0CrS3I1DC0AyKIUM_Kw6GnTJ9xEm9DTve2xo94mS-1-H4N1W5oC3QWPXdf0GzoVNY5uYvhJ22tyUdtuwJvTnZPP56eP5Wu2en95Wy5WmSuYTpmQTNjSQ42FEMzJAsBzvbZKlRzQqlKiEDUXtSi5LKRgfK2V9VipcaSsKzEnd1PuuOnrgEMybTjEfqw0XIMqpNYaRpWcVC6GYYhYm31sdjb-GgbmiMq05oTKHFEZqMyIavQ9Tj4cX_huMJrBNdg79E1El4wPzT8JfxmicyE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2706457770</pqid></control><display><type>article</type><title>An integrated panel data approach to modelling economic growth</title><source>Access via ScienceDirect (Elsevier)</source><creator>Feng, Guohua ; Gao, Jiti ; Peng, Bin</creator><creatorcontrib>Feng, Guohua ; Gao, Jiti ; Peng, Bin</creatorcontrib><description>Empirical growth analysis is plagued with three problems – variable selection, parameter heterogeneity and cross-sectional dependence – which are addressed independently from each other in most studies. This study is to propose an integrated framework that allows for parameter heterogeneity and cross-sectional error dependence, while simultaneously performing variable selection. We derive the asymptotic properties of the estimator, and apply the framework to a dataset of 89 countries over the period from 1960 to 2014. Our results support the “optimistic” conclusion of Sala-I-Martin (1997), and also reveal some cross-country patterns not found previously.</description><identifier>ISSN: 0304-4076</identifier><identifier>EISSN: 1872-6895</identifier><identifier>DOI: 10.1016/j.jeconom.2020.09.009</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Asymptotic methods ; Cross-sectional dependence ; Econometrics ; Economic growth ; Growth regressions ; Longitudinal studies ; Optimism ; Panel data ; Parameter heterogeneity ; Regression analysis ; Variable selection</subject><ispartof>Journal of econometrics, 2022-06, Vol.228 (2), p.379-397</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Jun 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-3513a8d0fe4331c5400d27ba66820ea685e33f23f382545312b76ade964835f93</citedby><cites>FETCH-LOGICAL-c417t-3513a8d0fe4331c5400d27ba66820ea685e33f23f382545312b76ade964835f93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jeconom.2020.09.009$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Feng, Guohua</creatorcontrib><creatorcontrib>Gao, Jiti</creatorcontrib><creatorcontrib>Peng, Bin</creatorcontrib><title>An integrated panel data approach to modelling economic growth</title><title>Journal of econometrics</title><description>Empirical growth analysis is plagued with three problems – variable selection, parameter heterogeneity and cross-sectional dependence – which are addressed independently from each other in most studies. This study is to propose an integrated framework that allows for parameter heterogeneity and cross-sectional error dependence, while simultaneously performing variable selection. We derive the asymptotic properties of the estimator, and apply the framework to a dataset of 89 countries over the period from 1960 to 2014. Our results support the “optimistic” conclusion of Sala-I-Martin (1997), and also reveal some cross-country patterns not found previously.</description><subject>Asymptotic methods</subject><subject>Cross-sectional dependence</subject><subject>Econometrics</subject><subject>Economic growth</subject><subject>Growth regressions</subject><subject>Longitudinal studies</subject><subject>Optimism</subject><subject>Panel data</subject><subject>Parameter heterogeneity</subject><subject>Regression analysis</subject><subject>Variable selection</subject><issn>0304-4076</issn><issn>1872-6895</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LwzAYx4MoOKcfQQh4bn2SNEl7UcbwDQZe9Byy5OnW0jUzzRS_vR3d3dNz-b89P0JuGeQMmLpv8xZd6MMu58AhhyoHqM7IjJWaZ6qs5DmZgYAiK0CrS3I1DC0AyKIUM_Kw6GnTJ9xEm9DTve2xo94mS-1-H4N1W5oC3QWPXdf0GzoVNY5uYvhJ22tyUdtuwJvTnZPP56eP5Wu2en95Wy5WmSuYTpmQTNjSQ42FEMzJAsBzvbZKlRzQqlKiEDUXtSi5LKRgfK2V9VipcaSsKzEnd1PuuOnrgEMybTjEfqw0XIMqpNYaRpWcVC6GYYhYm31sdjb-GgbmiMq05oTKHFEZqMyIavQ9Tj4cX_huMJrBNdg79E1El4wPzT8JfxmicyE</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Feng, Guohua</creator><creator>Gao, Jiti</creator><creator>Peng, Bin</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20220601</creationdate><title>An integrated panel data approach to modelling economic growth</title><author>Feng, Guohua ; Gao, Jiti ; Peng, Bin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-3513a8d0fe4331c5400d27ba66820ea685e33f23f382545312b76ade964835f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Asymptotic methods</topic><topic>Cross-sectional dependence</topic><topic>Econometrics</topic><topic>Economic growth</topic><topic>Growth regressions</topic><topic>Longitudinal studies</topic><topic>Optimism</topic><topic>Panel data</topic><topic>Parameter heterogeneity</topic><topic>Regression analysis</topic><topic>Variable selection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Guohua</creatorcontrib><creatorcontrib>Gao, Jiti</creatorcontrib><creatorcontrib>Peng, Bin</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of econometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feng, Guohua</au><au>Gao, Jiti</au><au>Peng, Bin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An integrated panel data approach to modelling economic growth</atitle><jtitle>Journal of econometrics</jtitle><date>2022-06-01</date><risdate>2022</risdate><volume>228</volume><issue>2</issue><spage>379</spage><epage>397</epage><pages>379-397</pages><issn>0304-4076</issn><eissn>1872-6895</eissn><abstract>Empirical growth analysis is plagued with three problems – variable selection, parameter heterogeneity and cross-sectional dependence – which are addressed independently from each other in most studies. This study is to propose an integrated framework that allows for parameter heterogeneity and cross-sectional error dependence, while simultaneously performing variable selection. We derive the asymptotic properties of the estimator, and apply the framework to a dataset of 89 countries over the period from 1960 to 2014. Our results support the “optimistic” conclusion of Sala-I-Martin (1997), and also reveal some cross-country patterns not found previously.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jeconom.2020.09.009</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-4076 |
ispartof | Journal of econometrics, 2022-06, Vol.228 (2), p.379-397 |
issn | 0304-4076 1872-6895 |
language | eng |
recordid | cdi_proquest_journals_2706457770 |
source | Access via ScienceDirect (Elsevier) |
subjects | Asymptotic methods Cross-sectional dependence Econometrics Economic growth Growth regressions Longitudinal studies Optimism Panel data Parameter heterogeneity Regression analysis Variable selection |
title | An integrated panel data approach to modelling economic growth |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T14%3A27%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20integrated%20panel%20data%20approach%20to%20modelling%20economic%20growth&rft.jtitle=Journal%20of%20econometrics&rft.au=Feng,%20Guohua&rft.date=2022-06-01&rft.volume=228&rft.issue=2&rft.spage=379&rft.epage=397&rft.pages=379-397&rft.issn=0304-4076&rft.eissn=1872-6895&rft_id=info:doi/10.1016/j.jeconom.2020.09.009&rft_dat=%3Cproquest_cross%3E2706457770%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2706457770&rft_id=info:pmid/&rft_els_id=S0304407621000014&rfr_iscdi=true |