Dynamical models for random simplicial complexes

We study a general model of random dynamical simplicial complexes and derive a formula for the asymptotic degree distribution. This asymptotic formula generalises results for a number of existing models, including random Apollonian networks and the weighted random recursive tree. It also confirms re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of applied probability 2022-08, Vol.32 (4), p.2860
Hauptverfasser: Fountoulakis, Nikolaos, Iyer, Tejas, Mailler, Cécile, Sulzbach, Henning
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page 2860
container_title The Annals of applied probability
container_volume 32
creator Fountoulakis, Nikolaos
Iyer, Tejas
Mailler, Cécile
Sulzbach, Henning
description We study a general model of random dynamical simplicial complexes and derive a formula for the asymptotic degree distribution. This asymptotic formula generalises results for a number of existing models, including random Apollonian networks and the weighted random recursive tree. It also confirms results on the scale-free nature of complex quantum network manifolds in dimensions d > 2, and special types of network geometry with Flavour models studied in the physics literature by Bianconi and Rahmede [Sci. Rep. 5 (2015) 13979 and Phys. Rev. E 93 (2016) 032315].
doi_str_mv 10.1214/21-AAP1752
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2706440654</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2706440654</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-524414da6a00bb6020d7eaaa6975b961b491e387d614f3bb5c64327ae520c3c03</originalsourceid><addsrcrecordid>eNotkE1LxDAYhIMoWFcv_oKCNyH6vvlsjmX9hAU96DmkaQpd2qYmu-D-eyu7pxmYhxkYQm4RHpCheGRI6_oTtWRnpGCoKlpprs9JgSCBSlTiklzlvAUAI4wuCDwdJjf23g3lGNsw5LKLqUxuauNY5n6ch973S-jjYsNvyNfkonNDDjcnXZHvl-ev9RvdfLy-r-sN9czIHZVMCBStUw6gaRQwaHVwzimjZWMUNsJg4JVuFYqON430SnCmXZAMPPfAV-Tu2Dun-LMPeWe3cZ-mZdIyDUoIUFIs1P2R8inmnEJn59SPLh0sgv1_xDK0p0f4H6A9UUo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2706440654</pqid></control><display><type>article</type><title>Dynamical models for random simplicial complexes</title><source>Project Euclid Complete</source><creator>Fountoulakis, Nikolaos ; Iyer, Tejas ; Mailler, Cécile ; Sulzbach, Henning</creator><creatorcontrib>Fountoulakis, Nikolaos ; Iyer, Tejas ; Mailler, Cécile ; Sulzbach, Henning</creatorcontrib><description>We study a general model of random dynamical simplicial complexes and derive a formula for the asymptotic degree distribution. This asymptotic formula generalises results for a number of existing models, including random Apollonian networks and the weighted random recursive tree. It also confirms results on the scale-free nature of complex quantum network manifolds in dimensions d &gt; 2, and special types of network geometry with Flavour models studied in the physics literature by Bianconi and Rahmede [Sci. Rep. 5 (2015) 13979 and Phys. Rev. E 93 (2016) 032315].</description><identifier>ISSN: 1050-5164</identifier><identifier>EISSN: 2168-8737</identifier><identifier>DOI: 10.1214/21-AAP1752</identifier><language>eng</language><publisher>Hayward: Institute of Mathematical Statistics</publisher><subject>Asymptotic methods ; Asymptotic properties ; Dynamic models ; Dynamical systems ; Flavors ; Mathematical models ; Random variables ; Random walk theory</subject><ispartof>The Annals of applied probability, 2022-08, Vol.32 (4), p.2860</ispartof><rights>Copyright Institute of Mathematical Statistics Aug 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-524414da6a00bb6020d7eaaa6975b961b491e387d614f3bb5c64327ae520c3c03</citedby><cites>FETCH-LOGICAL-c295t-524414da6a00bb6020d7eaaa6975b961b491e387d614f3bb5c64327ae520c3c03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,27931,27932</link.rule.ids></links><search><creatorcontrib>Fountoulakis, Nikolaos</creatorcontrib><creatorcontrib>Iyer, Tejas</creatorcontrib><creatorcontrib>Mailler, Cécile</creatorcontrib><creatorcontrib>Sulzbach, Henning</creatorcontrib><title>Dynamical models for random simplicial complexes</title><title>The Annals of applied probability</title><description>We study a general model of random dynamical simplicial complexes and derive a formula for the asymptotic degree distribution. This asymptotic formula generalises results for a number of existing models, including random Apollonian networks and the weighted random recursive tree. It also confirms results on the scale-free nature of complex quantum network manifolds in dimensions d &gt; 2, and special types of network geometry with Flavour models studied in the physics literature by Bianconi and Rahmede [Sci. Rep. 5 (2015) 13979 and Phys. Rev. E 93 (2016) 032315].</description><subject>Asymptotic methods</subject><subject>Asymptotic properties</subject><subject>Dynamic models</subject><subject>Dynamical systems</subject><subject>Flavors</subject><subject>Mathematical models</subject><subject>Random variables</subject><subject>Random walk theory</subject><issn>1050-5164</issn><issn>2168-8737</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNotkE1LxDAYhIMoWFcv_oKCNyH6vvlsjmX9hAU96DmkaQpd2qYmu-D-eyu7pxmYhxkYQm4RHpCheGRI6_oTtWRnpGCoKlpprs9JgSCBSlTiklzlvAUAI4wuCDwdJjf23g3lGNsw5LKLqUxuauNY5n6ch973S-jjYsNvyNfkonNDDjcnXZHvl-ev9RvdfLy-r-sN9czIHZVMCBStUw6gaRQwaHVwzimjZWMUNsJg4JVuFYqON430SnCmXZAMPPfAV-Tu2Dun-LMPeWe3cZ-mZdIyDUoIUFIs1P2R8inmnEJn59SPLh0sgv1_xDK0p0f4H6A9UUo</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Fountoulakis, Nikolaos</creator><creator>Iyer, Tejas</creator><creator>Mailler, Cécile</creator><creator>Sulzbach, Henning</creator><general>Institute of Mathematical Statistics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20220801</creationdate><title>Dynamical models for random simplicial complexes</title><author>Fountoulakis, Nikolaos ; Iyer, Tejas ; Mailler, Cécile ; Sulzbach, Henning</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-524414da6a00bb6020d7eaaa6975b961b491e387d614f3bb5c64327ae520c3c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Asymptotic methods</topic><topic>Asymptotic properties</topic><topic>Dynamic models</topic><topic>Dynamical systems</topic><topic>Flavors</topic><topic>Mathematical models</topic><topic>Random variables</topic><topic>Random walk theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fountoulakis, Nikolaos</creatorcontrib><creatorcontrib>Iyer, Tejas</creatorcontrib><creatorcontrib>Mailler, Cécile</creatorcontrib><creatorcontrib>Sulzbach, Henning</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>The Annals of applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fountoulakis, Nikolaos</au><au>Iyer, Tejas</au><au>Mailler, Cécile</au><au>Sulzbach, Henning</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamical models for random simplicial complexes</atitle><jtitle>The Annals of applied probability</jtitle><date>2022-08-01</date><risdate>2022</risdate><volume>32</volume><issue>4</issue><spage>2860</spage><pages>2860-</pages><issn>1050-5164</issn><eissn>2168-8737</eissn><abstract>We study a general model of random dynamical simplicial complexes and derive a formula for the asymptotic degree distribution. This asymptotic formula generalises results for a number of existing models, including random Apollonian networks and the weighted random recursive tree. It also confirms results on the scale-free nature of complex quantum network manifolds in dimensions d &gt; 2, and special types of network geometry with Flavour models studied in the physics literature by Bianconi and Rahmede [Sci. Rep. 5 (2015) 13979 and Phys. Rev. E 93 (2016) 032315].</abstract><cop>Hayward</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/21-AAP1752</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1050-5164
ispartof The Annals of applied probability, 2022-08, Vol.32 (4), p.2860
issn 1050-5164
2168-8737
language eng
recordid cdi_proquest_journals_2706440654
source Project Euclid Complete
subjects Asymptotic methods
Asymptotic properties
Dynamic models
Dynamical systems
Flavors
Mathematical models
Random variables
Random walk theory
title Dynamical models for random simplicial complexes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T23%3A36%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamical%20models%20for%20random%20simplicial%20complexes&rft.jtitle=The%20Annals%20of%20applied%20probability&rft.au=Fountoulakis,%20Nikolaos&rft.date=2022-08-01&rft.volume=32&rft.issue=4&rft.spage=2860&rft.pages=2860-&rft.issn=1050-5164&rft.eissn=2168-8737&rft_id=info:doi/10.1214/21-AAP1752&rft_dat=%3Cproquest_cross%3E2706440654%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2706440654&rft_id=info:pmid/&rfr_iscdi=true