Dynamical models for random simplicial complexes
We study a general model of random dynamical simplicial complexes and derive a formula for the asymptotic degree distribution. This asymptotic formula generalises results for a number of existing models, including random Apollonian networks and the weighted random recursive tree. It also confirms re...
Gespeichert in:
Veröffentlicht in: | The Annals of applied probability 2022-08, Vol.32 (4), p.2860 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | 2860 |
container_title | The Annals of applied probability |
container_volume | 32 |
creator | Fountoulakis, Nikolaos Iyer, Tejas Mailler, Cécile Sulzbach, Henning |
description | We study a general model of random dynamical simplicial complexes and derive a formula for the asymptotic degree distribution. This asymptotic formula generalises results for a number of existing models, including random Apollonian networks and the weighted random recursive tree. It also confirms results on the scale-free nature of complex quantum network manifolds in dimensions d > 2, and special types of network geometry with Flavour models studied in the physics literature by Bianconi and Rahmede [Sci. Rep. 5 (2015) 13979 and Phys. Rev. E 93 (2016) 032315]. |
doi_str_mv | 10.1214/21-AAP1752 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2706440654</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2706440654</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-524414da6a00bb6020d7eaaa6975b961b491e387d614f3bb5c64327ae520c3c03</originalsourceid><addsrcrecordid>eNotkE1LxDAYhIMoWFcv_oKCNyH6vvlsjmX9hAU96DmkaQpd2qYmu-D-eyu7pxmYhxkYQm4RHpCheGRI6_oTtWRnpGCoKlpprs9JgSCBSlTiklzlvAUAI4wuCDwdJjf23g3lGNsw5LKLqUxuauNY5n6ch973S-jjYsNvyNfkonNDDjcnXZHvl-ev9RvdfLy-r-sN9czIHZVMCBStUw6gaRQwaHVwzimjZWMUNsJg4JVuFYqON430SnCmXZAMPPfAV-Tu2Dun-LMPeWe3cZ-mZdIyDUoIUFIs1P2R8inmnEJn59SPLh0sgv1_xDK0p0f4H6A9UUo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2706440654</pqid></control><display><type>article</type><title>Dynamical models for random simplicial complexes</title><source>Project Euclid Complete</source><creator>Fountoulakis, Nikolaos ; Iyer, Tejas ; Mailler, Cécile ; Sulzbach, Henning</creator><creatorcontrib>Fountoulakis, Nikolaos ; Iyer, Tejas ; Mailler, Cécile ; Sulzbach, Henning</creatorcontrib><description>We study a general model of random dynamical simplicial complexes and derive a formula for the asymptotic degree distribution. This asymptotic formula generalises results for a number of existing models, including random Apollonian networks and the weighted random recursive tree. It also confirms results on the scale-free nature of complex quantum network manifolds in dimensions d > 2, and special types of network geometry with Flavour models studied in the physics literature by Bianconi and Rahmede [Sci. Rep. 5 (2015) 13979 and Phys. Rev. E 93 (2016) 032315].</description><identifier>ISSN: 1050-5164</identifier><identifier>EISSN: 2168-8737</identifier><identifier>DOI: 10.1214/21-AAP1752</identifier><language>eng</language><publisher>Hayward: Institute of Mathematical Statistics</publisher><subject>Asymptotic methods ; Asymptotic properties ; Dynamic models ; Dynamical systems ; Flavors ; Mathematical models ; Random variables ; Random walk theory</subject><ispartof>The Annals of applied probability, 2022-08, Vol.32 (4), p.2860</ispartof><rights>Copyright Institute of Mathematical Statistics Aug 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-524414da6a00bb6020d7eaaa6975b961b491e387d614f3bb5c64327ae520c3c03</citedby><cites>FETCH-LOGICAL-c295t-524414da6a00bb6020d7eaaa6975b961b491e387d614f3bb5c64327ae520c3c03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,27931,27932</link.rule.ids></links><search><creatorcontrib>Fountoulakis, Nikolaos</creatorcontrib><creatorcontrib>Iyer, Tejas</creatorcontrib><creatorcontrib>Mailler, Cécile</creatorcontrib><creatorcontrib>Sulzbach, Henning</creatorcontrib><title>Dynamical models for random simplicial complexes</title><title>The Annals of applied probability</title><description>We study a general model of random dynamical simplicial complexes and derive a formula for the asymptotic degree distribution. This asymptotic formula generalises results for a number of existing models, including random Apollonian networks and the weighted random recursive tree. It also confirms results on the scale-free nature of complex quantum network manifolds in dimensions d > 2, and special types of network geometry with Flavour models studied in the physics literature by Bianconi and Rahmede [Sci. Rep. 5 (2015) 13979 and Phys. Rev. E 93 (2016) 032315].</description><subject>Asymptotic methods</subject><subject>Asymptotic properties</subject><subject>Dynamic models</subject><subject>Dynamical systems</subject><subject>Flavors</subject><subject>Mathematical models</subject><subject>Random variables</subject><subject>Random walk theory</subject><issn>1050-5164</issn><issn>2168-8737</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNotkE1LxDAYhIMoWFcv_oKCNyH6vvlsjmX9hAU96DmkaQpd2qYmu-D-eyu7pxmYhxkYQm4RHpCheGRI6_oTtWRnpGCoKlpprs9JgSCBSlTiklzlvAUAI4wuCDwdJjf23g3lGNsw5LKLqUxuauNY5n6ch973S-jjYsNvyNfkonNDDjcnXZHvl-ev9RvdfLy-r-sN9czIHZVMCBStUw6gaRQwaHVwzimjZWMUNsJg4JVuFYqON430SnCmXZAMPPfAV-Tu2Dun-LMPeWe3cZ-mZdIyDUoIUFIs1P2R8inmnEJn59SPLh0sgv1_xDK0p0f4H6A9UUo</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Fountoulakis, Nikolaos</creator><creator>Iyer, Tejas</creator><creator>Mailler, Cécile</creator><creator>Sulzbach, Henning</creator><general>Institute of Mathematical Statistics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20220801</creationdate><title>Dynamical models for random simplicial complexes</title><author>Fountoulakis, Nikolaos ; Iyer, Tejas ; Mailler, Cécile ; Sulzbach, Henning</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-524414da6a00bb6020d7eaaa6975b961b491e387d614f3bb5c64327ae520c3c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Asymptotic methods</topic><topic>Asymptotic properties</topic><topic>Dynamic models</topic><topic>Dynamical systems</topic><topic>Flavors</topic><topic>Mathematical models</topic><topic>Random variables</topic><topic>Random walk theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fountoulakis, Nikolaos</creatorcontrib><creatorcontrib>Iyer, Tejas</creatorcontrib><creatorcontrib>Mailler, Cécile</creatorcontrib><creatorcontrib>Sulzbach, Henning</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>The Annals of applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fountoulakis, Nikolaos</au><au>Iyer, Tejas</au><au>Mailler, Cécile</au><au>Sulzbach, Henning</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamical models for random simplicial complexes</atitle><jtitle>The Annals of applied probability</jtitle><date>2022-08-01</date><risdate>2022</risdate><volume>32</volume><issue>4</issue><spage>2860</spage><pages>2860-</pages><issn>1050-5164</issn><eissn>2168-8737</eissn><abstract>We study a general model of random dynamical simplicial complexes and derive a formula for the asymptotic degree distribution. This asymptotic formula generalises results for a number of existing models, including random Apollonian networks and the weighted random recursive tree. It also confirms results on the scale-free nature of complex quantum network manifolds in dimensions d > 2, and special types of network geometry with Flavour models studied in the physics literature by Bianconi and Rahmede [Sci. Rep. 5 (2015) 13979 and Phys. Rev. E 93 (2016) 032315].</abstract><cop>Hayward</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/21-AAP1752</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1050-5164 |
ispartof | The Annals of applied probability, 2022-08, Vol.32 (4), p.2860 |
issn | 1050-5164 2168-8737 |
language | eng |
recordid | cdi_proquest_journals_2706440654 |
source | Project Euclid Complete |
subjects | Asymptotic methods Asymptotic properties Dynamic models Dynamical systems Flavors Mathematical models Random variables Random walk theory |
title | Dynamical models for random simplicial complexes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T23%3A36%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamical%20models%20for%20random%20simplicial%20complexes&rft.jtitle=The%20Annals%20of%20applied%20probability&rft.au=Fountoulakis,%20Nikolaos&rft.date=2022-08-01&rft.volume=32&rft.issue=4&rft.spage=2860&rft.pages=2860-&rft.issn=1050-5164&rft.eissn=2168-8737&rft_id=info:doi/10.1214/21-AAP1752&rft_dat=%3Cproquest_cross%3E2706440654%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2706440654&rft_id=info:pmid/&rfr_iscdi=true |