Highly flexible cellulose nanofiber/single-crystal nanodiamond flake heat spreader films for heat dissipation

Thermally conductive and electrically insulating polymer composites are ideal for applying in electrical or electronic fields as thermal management materials. Diamond nanomaterials have been used as an ideal thermal conductive filler due to their excellent intrinsic thermal conductivity. In this wor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. C, Materials for optical and electronic devices Materials for optical and electronic devices, 2022-08, Vol.1 (33), p.127-1279
Hauptverfasser: Gong, Ping, Li, Linhong, Fu, Guang-en, Shu, Shengcheng, Li, Maohua, Wang, Yandong, Qin, Yue, Kong, Xiangdong, Chen, Huanyi, Jiao, Chengcheng, Ruan, Xinxin, Cai, Tao, Dai, Wen, Yan, Chao, Nishimura, Kazuhito, Lin, Cheng-Te, Jiang, Nan, Yu, Jinhong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1279
container_issue 33
container_start_page 127
container_title Journal of materials chemistry. C, Materials for optical and electronic devices
container_volume 1
creator Gong, Ping
Li, Linhong
Fu, Guang-en
Shu, Shengcheng
Li, Maohua
Wang, Yandong
Qin, Yue
Kong, Xiangdong
Chen, Huanyi
Jiao, Chengcheng
Ruan, Xinxin
Cai, Tao
Dai, Wen
Yan, Chao
Nishimura, Kazuhito
Lin, Cheng-Te
Jiang, Nan
Yu, Jinhong
description Thermally conductive and electrically insulating polymer composites are ideal for applying in electrical or electronic fields as thermal management materials. Diamond nanomaterials have been used as an ideal thermal conductive filler due to their excellent intrinsic thermal conductivity. In this work, utilizing single-crystal nanodiamond (SCND) flakes as the thermally conductive filler, flexible cellulose nanofiber/single-crystal nanodiamond (CNF/SCND) flake composite films with high thermal conductivity were prepared by vacuum-assisted filtration. The strong hydrogen bonding interaction between CNF and SCND and the highly ordered stacking structure of SCND flake layers endowed the composite films with satisfactory flexibility and excellent heat dissipation performance. Compared with pure CNF film, a remarkable thermal conductivity enhancement of approximately 145.6 times and enhanced thermal conductivity (76.23 W m −1 K −1 ) was achieved in our CNF/SCND composite films. In addition, the enhanced thermal conductivity and excellent mechanical strength, accompanied with excellent flexibility, can be attributed to the CNF/SCND films with low and medium filling content of SCND. This demonstrates that the CNF/SCND composite films are a promising candidate as a heat spreader to rapidly cool LED lamps or electronic devices. A simple method was proposed to produce a flexible heat spreader with efficient thermal transportation performance.
doi_str_mv 10.1039/d2tc01830f
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2706231979</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2706231979</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-9c9163fd4d062647d8f0bd0cb0ed9b79efb5617764c25f8a91a7396c14c198aa3</originalsourceid><addsrcrecordid>eNpFkMFLwzAUxoMoOOYu3oWCN6EuadqkOcp0Thh4meeSJi9bZtrUpAP331tXme_yHt_7ve_Bh9AtwY8EUzHXWa8wKSk2F2iS4QKnvKD55XnO2DWaxbjHQ5WElUxMULOy2507JsbBt60dJAqcOzgfIWll642tIcyjbbcOUhWOsZfutNBWNr7Vw538hGQHsk9iF0BqCImxromJ8WHUtY3RdrK3vr1BV0a6CLO_PkUfy5fNYpWu31_fFk_rVNGc96lQgjBqdK4xy1jOdWlwrbGqMWhRcwGmLhjhnOUqK0wpBZGcCqZIrogopaRTdD_6dsF_HSD21d4fQju8rDI-eFIiuBioh5FSwccYwFRdsI0Mx4rg6jfR6jnbLE6JLgf4boRDVGfuP3H6A1zQdDc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2706231979</pqid></control><display><type>article</type><title>Highly flexible cellulose nanofiber/single-crystal nanodiamond flake heat spreader films for heat dissipation</title><source>Royal Society Of Chemistry Journals</source><creator>Gong, Ping ; Li, Linhong ; Fu, Guang-en ; Shu, Shengcheng ; Li, Maohua ; Wang, Yandong ; Qin, Yue ; Kong, Xiangdong ; Chen, Huanyi ; Jiao, Chengcheng ; Ruan, Xinxin ; Cai, Tao ; Dai, Wen ; Yan, Chao ; Nishimura, Kazuhito ; Lin, Cheng-Te ; Jiang, Nan ; Yu, Jinhong</creator><creatorcontrib>Gong, Ping ; Li, Linhong ; Fu, Guang-en ; Shu, Shengcheng ; Li, Maohua ; Wang, Yandong ; Qin, Yue ; Kong, Xiangdong ; Chen, Huanyi ; Jiao, Chengcheng ; Ruan, Xinxin ; Cai, Tao ; Dai, Wen ; Yan, Chao ; Nishimura, Kazuhito ; Lin, Cheng-Te ; Jiang, Nan ; Yu, Jinhong</creatorcontrib><description>Thermally conductive and electrically insulating polymer composites are ideal for applying in electrical or electronic fields as thermal management materials. Diamond nanomaterials have been used as an ideal thermal conductive filler due to their excellent intrinsic thermal conductivity. In this work, utilizing single-crystal nanodiamond (SCND) flakes as the thermally conductive filler, flexible cellulose nanofiber/single-crystal nanodiamond (CNF/SCND) flake composite films with high thermal conductivity were prepared by vacuum-assisted filtration. The strong hydrogen bonding interaction between CNF and SCND and the highly ordered stacking structure of SCND flake layers endowed the composite films with satisfactory flexibility and excellent heat dissipation performance. Compared with pure CNF film, a remarkable thermal conductivity enhancement of approximately 145.6 times and enhanced thermal conductivity (76.23 W m −1 K −1 ) was achieved in our CNF/SCND composite films. In addition, the enhanced thermal conductivity and excellent mechanical strength, accompanied with excellent flexibility, can be attributed to the CNF/SCND films with low and medium filling content of SCND. This demonstrates that the CNF/SCND composite films are a promising candidate as a heat spreader to rapidly cool LED lamps or electronic devices. A simple method was proposed to produce a flexible heat spreader with efficient thermal transportation performance.</description><identifier>ISSN: 2050-7526</identifier><identifier>EISSN: 2050-7534</identifier><identifier>DOI: 10.1039/d2tc01830f</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Bonding strength ; Cellulose ; Cellulose fibers ; Diamonds ; Dissipation ; Electronic devices ; Fillers ; Flake composites ; Flakes ; Flexibility ; Heat conductivity ; Heat transfer ; Hydrogen bonding ; Nanofibers ; Nanomaterials ; Nanostructure ; Polymer matrix composites ; Single crystals ; Thermal conductivity ; Thermal management</subject><ispartof>Journal of materials chemistry. C, Materials for optical and electronic devices, 2022-08, Vol.1 (33), p.127-1279</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-9c9163fd4d062647d8f0bd0cb0ed9b79efb5617764c25f8a91a7396c14c198aa3</citedby><cites>FETCH-LOGICAL-c347t-9c9163fd4d062647d8f0bd0cb0ed9b79efb5617764c25f8a91a7396c14c198aa3</cites><orcidid>0000-0002-7090-9610 ; 0000-0003-0601-5150 ; 0000-0003-3379-4188 ; 0000-0001-9134-7568 ; 0000-0002-6008-9452 ; 0000-0002-9506-1126</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids></links><search><creatorcontrib>Gong, Ping</creatorcontrib><creatorcontrib>Li, Linhong</creatorcontrib><creatorcontrib>Fu, Guang-en</creatorcontrib><creatorcontrib>Shu, Shengcheng</creatorcontrib><creatorcontrib>Li, Maohua</creatorcontrib><creatorcontrib>Wang, Yandong</creatorcontrib><creatorcontrib>Qin, Yue</creatorcontrib><creatorcontrib>Kong, Xiangdong</creatorcontrib><creatorcontrib>Chen, Huanyi</creatorcontrib><creatorcontrib>Jiao, Chengcheng</creatorcontrib><creatorcontrib>Ruan, Xinxin</creatorcontrib><creatorcontrib>Cai, Tao</creatorcontrib><creatorcontrib>Dai, Wen</creatorcontrib><creatorcontrib>Yan, Chao</creatorcontrib><creatorcontrib>Nishimura, Kazuhito</creatorcontrib><creatorcontrib>Lin, Cheng-Te</creatorcontrib><creatorcontrib>Jiang, Nan</creatorcontrib><creatorcontrib>Yu, Jinhong</creatorcontrib><title>Highly flexible cellulose nanofiber/single-crystal nanodiamond flake heat spreader films for heat dissipation</title><title>Journal of materials chemistry. C, Materials for optical and electronic devices</title><description>Thermally conductive and electrically insulating polymer composites are ideal for applying in electrical or electronic fields as thermal management materials. Diamond nanomaterials have been used as an ideal thermal conductive filler due to their excellent intrinsic thermal conductivity. In this work, utilizing single-crystal nanodiamond (SCND) flakes as the thermally conductive filler, flexible cellulose nanofiber/single-crystal nanodiamond (CNF/SCND) flake composite films with high thermal conductivity were prepared by vacuum-assisted filtration. The strong hydrogen bonding interaction between CNF and SCND and the highly ordered stacking structure of SCND flake layers endowed the composite films with satisfactory flexibility and excellent heat dissipation performance. Compared with pure CNF film, a remarkable thermal conductivity enhancement of approximately 145.6 times and enhanced thermal conductivity (76.23 W m −1 K −1 ) was achieved in our CNF/SCND composite films. In addition, the enhanced thermal conductivity and excellent mechanical strength, accompanied with excellent flexibility, can be attributed to the CNF/SCND films with low and medium filling content of SCND. This demonstrates that the CNF/SCND composite films are a promising candidate as a heat spreader to rapidly cool LED lamps or electronic devices. A simple method was proposed to produce a flexible heat spreader with efficient thermal transportation performance.</description><subject>Bonding strength</subject><subject>Cellulose</subject><subject>Cellulose fibers</subject><subject>Diamonds</subject><subject>Dissipation</subject><subject>Electronic devices</subject><subject>Fillers</subject><subject>Flake composites</subject><subject>Flakes</subject><subject>Flexibility</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Hydrogen bonding</subject><subject>Nanofibers</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Polymer matrix composites</subject><subject>Single crystals</subject><subject>Thermal conductivity</subject><subject>Thermal management</subject><issn>2050-7526</issn><issn>2050-7534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpFkMFLwzAUxoMoOOYu3oWCN6EuadqkOcp0Thh4meeSJi9bZtrUpAP331tXme_yHt_7ve_Bh9AtwY8EUzHXWa8wKSk2F2iS4QKnvKD55XnO2DWaxbjHQ5WElUxMULOy2507JsbBt60dJAqcOzgfIWll642tIcyjbbcOUhWOsZfutNBWNr7Vw538hGQHsk9iF0BqCImxromJ8WHUtY3RdrK3vr1BV0a6CLO_PkUfy5fNYpWu31_fFk_rVNGc96lQgjBqdK4xy1jOdWlwrbGqMWhRcwGmLhjhnOUqK0wpBZGcCqZIrogopaRTdD_6dsF_HSD21d4fQju8rDI-eFIiuBioh5FSwccYwFRdsI0Mx4rg6jfR6jnbLE6JLgf4boRDVGfuP3H6A1zQdDc</recordid><startdate>20220825</startdate><enddate>20220825</enddate><creator>Gong, Ping</creator><creator>Li, Linhong</creator><creator>Fu, Guang-en</creator><creator>Shu, Shengcheng</creator><creator>Li, Maohua</creator><creator>Wang, Yandong</creator><creator>Qin, Yue</creator><creator>Kong, Xiangdong</creator><creator>Chen, Huanyi</creator><creator>Jiao, Chengcheng</creator><creator>Ruan, Xinxin</creator><creator>Cai, Tao</creator><creator>Dai, Wen</creator><creator>Yan, Chao</creator><creator>Nishimura, Kazuhito</creator><creator>Lin, Cheng-Te</creator><creator>Jiang, Nan</creator><creator>Yu, Jinhong</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7090-9610</orcidid><orcidid>https://orcid.org/0000-0003-0601-5150</orcidid><orcidid>https://orcid.org/0000-0003-3379-4188</orcidid><orcidid>https://orcid.org/0000-0001-9134-7568</orcidid><orcidid>https://orcid.org/0000-0002-6008-9452</orcidid><orcidid>https://orcid.org/0000-0002-9506-1126</orcidid></search><sort><creationdate>20220825</creationdate><title>Highly flexible cellulose nanofiber/single-crystal nanodiamond flake heat spreader films for heat dissipation</title><author>Gong, Ping ; Li, Linhong ; Fu, Guang-en ; Shu, Shengcheng ; Li, Maohua ; Wang, Yandong ; Qin, Yue ; Kong, Xiangdong ; Chen, Huanyi ; Jiao, Chengcheng ; Ruan, Xinxin ; Cai, Tao ; Dai, Wen ; Yan, Chao ; Nishimura, Kazuhito ; Lin, Cheng-Te ; Jiang, Nan ; Yu, Jinhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-9c9163fd4d062647d8f0bd0cb0ed9b79efb5617764c25f8a91a7396c14c198aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bonding strength</topic><topic>Cellulose</topic><topic>Cellulose fibers</topic><topic>Diamonds</topic><topic>Dissipation</topic><topic>Electronic devices</topic><topic>Fillers</topic><topic>Flake composites</topic><topic>Flakes</topic><topic>Flexibility</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Hydrogen bonding</topic><topic>Nanofibers</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Polymer matrix composites</topic><topic>Single crystals</topic><topic>Thermal conductivity</topic><topic>Thermal management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gong, Ping</creatorcontrib><creatorcontrib>Li, Linhong</creatorcontrib><creatorcontrib>Fu, Guang-en</creatorcontrib><creatorcontrib>Shu, Shengcheng</creatorcontrib><creatorcontrib>Li, Maohua</creatorcontrib><creatorcontrib>Wang, Yandong</creatorcontrib><creatorcontrib>Qin, Yue</creatorcontrib><creatorcontrib>Kong, Xiangdong</creatorcontrib><creatorcontrib>Chen, Huanyi</creatorcontrib><creatorcontrib>Jiao, Chengcheng</creatorcontrib><creatorcontrib>Ruan, Xinxin</creatorcontrib><creatorcontrib>Cai, Tao</creatorcontrib><creatorcontrib>Dai, Wen</creatorcontrib><creatorcontrib>Yan, Chao</creatorcontrib><creatorcontrib>Nishimura, Kazuhito</creatorcontrib><creatorcontrib>Lin, Cheng-Te</creatorcontrib><creatorcontrib>Jiang, Nan</creatorcontrib><creatorcontrib>Yu, Jinhong</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gong, Ping</au><au>Li, Linhong</au><au>Fu, Guang-en</au><au>Shu, Shengcheng</au><au>Li, Maohua</au><au>Wang, Yandong</au><au>Qin, Yue</au><au>Kong, Xiangdong</au><au>Chen, Huanyi</au><au>Jiao, Chengcheng</au><au>Ruan, Xinxin</au><au>Cai, Tao</au><au>Dai, Wen</au><au>Yan, Chao</au><au>Nishimura, Kazuhito</au><au>Lin, Cheng-Te</au><au>Jiang, Nan</au><au>Yu, Jinhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly flexible cellulose nanofiber/single-crystal nanodiamond flake heat spreader films for heat dissipation</atitle><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle><date>2022-08-25</date><risdate>2022</risdate><volume>1</volume><issue>33</issue><spage>127</spage><epage>1279</epage><pages>127-1279</pages><issn>2050-7526</issn><eissn>2050-7534</eissn><abstract>Thermally conductive and electrically insulating polymer composites are ideal for applying in electrical or electronic fields as thermal management materials. Diamond nanomaterials have been used as an ideal thermal conductive filler due to their excellent intrinsic thermal conductivity. In this work, utilizing single-crystal nanodiamond (SCND) flakes as the thermally conductive filler, flexible cellulose nanofiber/single-crystal nanodiamond (CNF/SCND) flake composite films with high thermal conductivity were prepared by vacuum-assisted filtration. The strong hydrogen bonding interaction between CNF and SCND and the highly ordered stacking structure of SCND flake layers endowed the composite films with satisfactory flexibility and excellent heat dissipation performance. Compared with pure CNF film, a remarkable thermal conductivity enhancement of approximately 145.6 times and enhanced thermal conductivity (76.23 W m −1 K −1 ) was achieved in our CNF/SCND composite films. In addition, the enhanced thermal conductivity and excellent mechanical strength, accompanied with excellent flexibility, can be attributed to the CNF/SCND films with low and medium filling content of SCND. This demonstrates that the CNF/SCND composite films are a promising candidate as a heat spreader to rapidly cool LED lamps or electronic devices. A simple method was proposed to produce a flexible heat spreader with efficient thermal transportation performance.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d2tc01830f</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-7090-9610</orcidid><orcidid>https://orcid.org/0000-0003-0601-5150</orcidid><orcidid>https://orcid.org/0000-0003-3379-4188</orcidid><orcidid>https://orcid.org/0000-0001-9134-7568</orcidid><orcidid>https://orcid.org/0000-0002-6008-9452</orcidid><orcidid>https://orcid.org/0000-0002-9506-1126</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7526
ispartof Journal of materials chemistry. C, Materials for optical and electronic devices, 2022-08, Vol.1 (33), p.127-1279
issn 2050-7526
2050-7534
language eng
recordid cdi_proquest_journals_2706231979
source Royal Society Of Chemistry Journals
subjects Bonding strength
Cellulose
Cellulose fibers
Diamonds
Dissipation
Electronic devices
Fillers
Flake composites
Flakes
Flexibility
Heat conductivity
Heat transfer
Hydrogen bonding
Nanofibers
Nanomaterials
Nanostructure
Polymer matrix composites
Single crystals
Thermal conductivity
Thermal management
title Highly flexible cellulose nanofiber/single-crystal nanodiamond flake heat spreader films for heat dissipation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T20%3A20%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20flexible%20cellulose%20nanofiber/single-crystal%20nanodiamond%20flake%20heat%20spreader%20films%20for%20heat%20dissipation&rft.jtitle=Journal%20of%20materials%20chemistry.%20C,%20Materials%20for%20optical%20and%20electronic%20devices&rft.au=Gong,%20Ping&rft.date=2022-08-25&rft.volume=1&rft.issue=33&rft.spage=127&rft.epage=1279&rft.pages=127-1279&rft.issn=2050-7526&rft.eissn=2050-7534&rft_id=info:doi/10.1039/d2tc01830f&rft_dat=%3Cproquest_cross%3E2706231979%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2706231979&rft_id=info:pmid/&rfr_iscdi=true