Simultaneous Estimation of Vehicle Mass and Unknown Road Roughness Based on Adaptive Extended Kalman Filtering of Suspension Systems

This study presents a vehicle mass estimation system based on adaptive extended Kalman filtering with unknown input (AEKF-UI) estimation of vehicle suspension systems. The suggested real-time methodology is based on the explicit correlation between road roughness and suspension system. Because the r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2022-08, Vol.11 (16), p.2544
Hauptverfasser: Yang, Haolin, Kim, Bo-Gyu, Oh, Jong-Seok, Kim, Gi-Woo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 16
container_start_page 2544
container_title Electronics (Basel)
container_volume 11
creator Yang, Haolin
Kim, Bo-Gyu
Oh, Jong-Seok
Kim, Gi-Woo
description This study presents a vehicle mass estimation system based on adaptive extended Kalman filtering with unknown input (AEKF-UI) estimation of vehicle suspension systems. The suggested real-time methodology is based on the explicit correlation between road roughness and suspension system. Because the road roughness input influences the suspension system, AEKF-UI with a forgetting factor is proposed to simultaneously estimate the time-varying parameter (vehicle mass) of vehicle suspension systems and road roughness using an unknown input estimator. However, a constant forgetting factor does not adaptively weigh the covariance of all the states, and optimal filtering cannot be ensured. To resolve this problem, we present an adaptive forgetting factor technique employed to track time-varying parameters and unknown inputs. Simulation studies demonstrate that the proposed algorithm can simultaneously estimate the vehicle mass variation and unknown road roughness input. The feasibility and effectiveness of the proposed estimation algorithm were verified through laboratory-level experiments.
doi_str_mv 10.3390/electronics11162544
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2706179728</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A724446490</galeid><sourcerecordid>A724446490</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-b237580013c302671907a72677b75ca8711164ded06c59dad4ab2f52ed3af6d23</originalsourceid><addsrcrecordid>eNptUUtPwzAMrhBIIOAXcInEeZBH2yzHgcZDDCEx4Fp5iTsCbTKSlMedH06mceCALdmW7c-fbBfFEaMnQih6ih3qFLyzOjLGal6V5Vaxx6lUI8UV3_4T7xaHMb7QLIqJsaB7xffc9kOXwKEfIpnGZHtI1jviW_KEz1Z3SG4hRgLOkEf36vyHI_ceTDbD8tlhLp1BREMyZmJglew7kulnQmdy8ga6Hhy5sF3CYN1yPXY-xBW6uCaZf8WEfTwodlroIh7--v3i8WL6cH41mt1dXp9PZiMtapZGCy5kNaaUCS0oryVTVILMgVzISsNYrtcvMy2tdaUMmBIWvK04GgFtbbjYL443c1fBvw0YU_Pih-AyZcMlrZlUko9z18mmawkdNta1PgXQWQ32VnuHrc35ieRlWdalohkgNgAdfIwB22YV8hnDV8Nos35R88-LxA9g2Yhd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2706179728</pqid></control><display><type>article</type><title>Simultaneous Estimation of Vehicle Mass and Unknown Road Roughness Based on Adaptive Extended Kalman Filtering of Suspension Systems</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Yang, Haolin ; Kim, Bo-Gyu ; Oh, Jong-Seok ; Kim, Gi-Woo</creator><creatorcontrib>Yang, Haolin ; Kim, Bo-Gyu ; Oh, Jong-Seok ; Kim, Gi-Woo</creatorcontrib><description>This study presents a vehicle mass estimation system based on adaptive extended Kalman filtering with unknown input (AEKF-UI) estimation of vehicle suspension systems. The suggested real-time methodology is based on the explicit correlation between road roughness and suspension system. Because the road roughness input influences the suspension system, AEKF-UI with a forgetting factor is proposed to simultaneously estimate the time-varying parameter (vehicle mass) of vehicle suspension systems and road roughness using an unknown input estimator. However, a constant forgetting factor does not adaptively weigh the covariance of all the states, and optimal filtering cannot be ensured. To resolve this problem, we present an adaptive forgetting factor technique employed to track time-varying parameters and unknown inputs. Simulation studies demonstrate that the proposed algorithm can simultaneously estimate the vehicle mass variation and unknown road roughness input. The feasibility and effectiveness of the proposed estimation algorithm were verified through laboratory-level experiments.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics11162544</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Algorithms ; Embedded systems ; Estimation theory ; Kalman filtering ; Kalman filters ; Parameter estimation ; Parameters ; Roads ; Roads &amp; highways ; Roughness ; Sensors ; South Korea ; Streets ; Suspension systems ; Vehicles</subject><ispartof>Electronics (Basel), 2022-08, Vol.11 (16), p.2544</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-b237580013c302671907a72677b75ca8711164ded06c59dad4ab2f52ed3af6d23</citedby><cites>FETCH-LOGICAL-c361t-b237580013c302671907a72677b75ca8711164ded06c59dad4ab2f52ed3af6d23</cites><orcidid>0000-0001-6976-6205 ; 0000-0003-4625-0382</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Yang, Haolin</creatorcontrib><creatorcontrib>Kim, Bo-Gyu</creatorcontrib><creatorcontrib>Oh, Jong-Seok</creatorcontrib><creatorcontrib>Kim, Gi-Woo</creatorcontrib><title>Simultaneous Estimation of Vehicle Mass and Unknown Road Roughness Based on Adaptive Extended Kalman Filtering of Suspension Systems</title><title>Electronics (Basel)</title><description>This study presents a vehicle mass estimation system based on adaptive extended Kalman filtering with unknown input (AEKF-UI) estimation of vehicle suspension systems. The suggested real-time methodology is based on the explicit correlation between road roughness and suspension system. Because the road roughness input influences the suspension system, AEKF-UI with a forgetting factor is proposed to simultaneously estimate the time-varying parameter (vehicle mass) of vehicle suspension systems and road roughness using an unknown input estimator. However, a constant forgetting factor does not adaptively weigh the covariance of all the states, and optimal filtering cannot be ensured. To resolve this problem, we present an adaptive forgetting factor technique employed to track time-varying parameters and unknown inputs. Simulation studies demonstrate that the proposed algorithm can simultaneously estimate the vehicle mass variation and unknown road roughness input. The feasibility and effectiveness of the proposed estimation algorithm were verified through laboratory-level experiments.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Embedded systems</subject><subject>Estimation theory</subject><subject>Kalman filtering</subject><subject>Kalman filters</subject><subject>Parameter estimation</subject><subject>Parameters</subject><subject>Roads</subject><subject>Roads &amp; highways</subject><subject>Roughness</subject><subject>Sensors</subject><subject>South Korea</subject><subject>Streets</subject><subject>Suspension systems</subject><subject>Vehicles</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptUUtPwzAMrhBIIOAXcInEeZBH2yzHgcZDDCEx4Fp5iTsCbTKSlMedH06mceCALdmW7c-fbBfFEaMnQih6ih3qFLyzOjLGal6V5Vaxx6lUI8UV3_4T7xaHMb7QLIqJsaB7xffc9kOXwKEfIpnGZHtI1jviW_KEz1Z3SG4hRgLOkEf36vyHI_ceTDbD8tlhLp1BREMyZmJglew7kulnQmdy8ga6Hhy5sF3CYN1yPXY-xBW6uCaZf8WEfTwodlroIh7--v3i8WL6cH41mt1dXp9PZiMtapZGCy5kNaaUCS0oryVTVILMgVzISsNYrtcvMy2tdaUMmBIWvK04GgFtbbjYL443c1fBvw0YU_Pih-AyZcMlrZlUko9z18mmawkdNta1PgXQWQ32VnuHrc35ieRlWdalohkgNgAdfIwB22YV8hnDV8Nos35R88-LxA9g2Yhd</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Yang, Haolin</creator><creator>Kim, Bo-Gyu</creator><creator>Oh, Jong-Seok</creator><creator>Kim, Gi-Woo</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-6976-6205</orcidid><orcidid>https://orcid.org/0000-0003-4625-0382</orcidid></search><sort><creationdate>20220801</creationdate><title>Simultaneous Estimation of Vehicle Mass and Unknown Road Roughness Based on Adaptive Extended Kalman Filtering of Suspension Systems</title><author>Yang, Haolin ; Kim, Bo-Gyu ; Oh, Jong-Seok ; Kim, Gi-Woo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-b237580013c302671907a72677b75ca8711164ded06c59dad4ab2f52ed3af6d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Embedded systems</topic><topic>Estimation theory</topic><topic>Kalman filtering</topic><topic>Kalman filters</topic><topic>Parameter estimation</topic><topic>Parameters</topic><topic>Roads</topic><topic>Roads &amp; highways</topic><topic>Roughness</topic><topic>Sensors</topic><topic>South Korea</topic><topic>Streets</topic><topic>Suspension systems</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Haolin</creatorcontrib><creatorcontrib>Kim, Bo-Gyu</creatorcontrib><creatorcontrib>Oh, Jong-Seok</creatorcontrib><creatorcontrib>Kim, Gi-Woo</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Haolin</au><au>Kim, Bo-Gyu</au><au>Oh, Jong-Seok</au><au>Kim, Gi-Woo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simultaneous Estimation of Vehicle Mass and Unknown Road Roughness Based on Adaptive Extended Kalman Filtering of Suspension Systems</atitle><jtitle>Electronics (Basel)</jtitle><date>2022-08-01</date><risdate>2022</risdate><volume>11</volume><issue>16</issue><spage>2544</spage><pages>2544-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>This study presents a vehicle mass estimation system based on adaptive extended Kalman filtering with unknown input (AEKF-UI) estimation of vehicle suspension systems. The suggested real-time methodology is based on the explicit correlation between road roughness and suspension system. Because the road roughness input influences the suspension system, AEKF-UI with a forgetting factor is proposed to simultaneously estimate the time-varying parameter (vehicle mass) of vehicle suspension systems and road roughness using an unknown input estimator. However, a constant forgetting factor does not adaptively weigh the covariance of all the states, and optimal filtering cannot be ensured. To resolve this problem, we present an adaptive forgetting factor technique employed to track time-varying parameters and unknown inputs. Simulation studies demonstrate that the proposed algorithm can simultaneously estimate the vehicle mass variation and unknown road roughness input. The feasibility and effectiveness of the proposed estimation algorithm were verified through laboratory-level experiments.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics11162544</doi><orcidid>https://orcid.org/0000-0001-6976-6205</orcidid><orcidid>https://orcid.org/0000-0003-4625-0382</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-9292
ispartof Electronics (Basel), 2022-08, Vol.11 (16), p.2544
issn 2079-9292
2079-9292
language eng
recordid cdi_proquest_journals_2706179728
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute
subjects Accuracy
Algorithms
Embedded systems
Estimation theory
Kalman filtering
Kalman filters
Parameter estimation
Parameters
Roads
Roads & highways
Roughness
Sensors
South Korea
Streets
Suspension systems
Vehicles
title Simultaneous Estimation of Vehicle Mass and Unknown Road Roughness Based on Adaptive Extended Kalman Filtering of Suspension Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T15%3A11%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simultaneous%20Estimation%20of%20Vehicle%20Mass%20and%20Unknown%20Road%20Roughness%20Based%20on%20Adaptive%20Extended%20Kalman%20Filtering%20of%20Suspension%20Systems&rft.jtitle=Electronics%20(Basel)&rft.au=Yang,%20Haolin&rft.date=2022-08-01&rft.volume=11&rft.issue=16&rft.spage=2544&rft.pages=2544-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics11162544&rft_dat=%3Cgale_proqu%3EA724446490%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2706179728&rft_id=info:pmid/&rft_galeid=A724446490&rfr_iscdi=true