Feature selection based on multiview entropy measures in multiperspective rough set

The performance of the neighborhood rough set model in feature selection is limited by nonobjective parameter selection method, the uncertainty measures considered only from a single view, and high time cost caused by processing high‐dimensional data. To solve the above problems, this study first de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of intelligent systems 2022-10, Vol.37 (10), p.7200-7234
Hauptverfasser: Xu, Jiucheng, Qu, Kanglin, Meng, Xiangru, Sun, Yuanhao, Hou, Qincheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7234
container_issue 10
container_start_page 7200
container_title International journal of intelligent systems
container_volume 37
creator Xu, Jiucheng
Qu, Kanglin
Meng, Xiangru
Sun, Yuanhao
Hou, Qincheng
description The performance of the neighborhood rough set model in feature selection is limited by nonobjective parameter selection method, the uncertainty measures considered only from a single view, and high time cost caused by processing high‐dimensional data. To solve the above problems, this study first defines the interclass boundary to granulate the samples in different classes, and three types of neighborhood concepts—negative perspective, neutral perspective, and positive perspective—are put forward based on different cognitive perspectives. Then, the concept of the multiperspective rough set model is developed. The most prominent feature of this model is the discovery of differences between classes from the given data, without any parameters. Second, by integrating the information theory and algebraic views under the multiperspective rough set model, multiview entropy measures are proposed to effectively measure the uncertainty in data. Moreover, a nonmonotonic feature selection algorithm based on the mutual information in the multiview entropy measures under the neutral perspective as the evaluation function of feature importance is designed to resolve the disadvantages of the algorithms based on the monotone evaluation function. Finally, Information Gain is introduced to preliminarily decrease the dimension of high‐dimensional data sets to promote classification accuracy and reduce time consumption. The experimental results confirm that the proposed algorithm is efficient in eliminating noise and increasing classification accuracy.
doi_str_mv 10.1002/int.22878
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2706177264</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2706177264</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2978-a544e93f484b3faf3fdcecee0390e57ffdb5d0f2517b39171df0d9b27888b723</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EEqUw8A8sMTGk9VdqZ0QVhUoVDHRgs_JxBldpEmynVf49LunKdCfd874nPQjdUzKjhLC5bcKMMSXVBZpQkqmEUvp5iSZEKZEoKvk1uvF-RwilUqQT9LGCPPQOsIcaymDbBhe5hwrHZd_XwR4sHDE0wbXdgPeQ-wh7bM_XDpzvTrkDYNf2X9-xJ9yiK5PXHu7Oc4q2q-ft8jXZvL-sl0-bpGSZVEmeCgEZN0KJgpvccFOVUAIQnhFIpTFVkVbEsJTKgmdU0sqQKiuYVEoVkvEpehhrO9f-9OCD3rW9a-JHzSRZUCnZQkTqcaRK13rvwOjO2X3uBk2JPinTUZn-UxbZ-cgebQ3D_6Bev23HxC9Vym9l</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2706177264</pqid></control><display><type>article</type><title>Feature selection based on multiview entropy measures in multiperspective rough set</title><source>Wiley Online Library All Journals</source><creator>Xu, Jiucheng ; Qu, Kanglin ; Meng, Xiangru ; Sun, Yuanhao ; Hou, Qincheng</creator><creatorcontrib>Xu, Jiucheng ; Qu, Kanglin ; Meng, Xiangru ; Sun, Yuanhao ; Hou, Qincheng</creatorcontrib><description>The performance of the neighborhood rough set model in feature selection is limited by nonobjective parameter selection method, the uncertainty measures considered only from a single view, and high time cost caused by processing high‐dimensional data. To solve the above problems, this study first defines the interclass boundary to granulate the samples in different classes, and three types of neighborhood concepts—negative perspective, neutral perspective, and positive perspective—are put forward based on different cognitive perspectives. Then, the concept of the multiperspective rough set model is developed. The most prominent feature of this model is the discovery of differences between classes from the given data, without any parameters. Second, by integrating the information theory and algebraic views under the multiperspective rough set model, multiview entropy measures are proposed to effectively measure the uncertainty in data. Moreover, a nonmonotonic feature selection algorithm based on the mutual information in the multiview entropy measures under the neutral perspective as the evaluation function of feature importance is designed to resolve the disadvantages of the algorithms based on the monotone evaluation function. Finally, Information Gain is introduced to preliminarily decrease the dimension of high‐dimensional data sets to promote classification accuracy and reduce time consumption. The experimental results confirm that the proposed algorithm is efficient in eliminating noise and increasing classification accuracy.</description><identifier>ISSN: 0884-8173</identifier><identifier>EISSN: 1098-111X</identifier><identifier>DOI: 10.1002/int.22878</identifier><language>eng</language><publisher>New York: Hindawi Limited</publisher><subject>Algorithms ; Classification ; Entropy ; Entropy (Information theory) ; Feature selection ; Granulation ; information gain ; Information theory ; Intelligent systems ; Mathematical models ; multiperspective rough set ; multiview entropy measures ; nonmonotonicity ; Parameters ; Rough set models ; Uncertainty</subject><ispartof>International journal of intelligent systems, 2022-10, Vol.37 (10), p.7200-7234</ispartof><rights>2022 Wiley Periodicals LLC</rights><rights>2022 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2978-a544e93f484b3faf3fdcecee0390e57ffdb5d0f2517b39171df0d9b27888b723</citedby><cites>FETCH-LOGICAL-c2978-a544e93f484b3faf3fdcecee0390e57ffdb5d0f2517b39171df0d9b27888b723</cites><orcidid>0000-0002-5062-5012</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fint.22878$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fint.22878$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Xu, Jiucheng</creatorcontrib><creatorcontrib>Qu, Kanglin</creatorcontrib><creatorcontrib>Meng, Xiangru</creatorcontrib><creatorcontrib>Sun, Yuanhao</creatorcontrib><creatorcontrib>Hou, Qincheng</creatorcontrib><title>Feature selection based on multiview entropy measures in multiperspective rough set</title><title>International journal of intelligent systems</title><description>The performance of the neighborhood rough set model in feature selection is limited by nonobjective parameter selection method, the uncertainty measures considered only from a single view, and high time cost caused by processing high‐dimensional data. To solve the above problems, this study first defines the interclass boundary to granulate the samples in different classes, and three types of neighborhood concepts—negative perspective, neutral perspective, and positive perspective—are put forward based on different cognitive perspectives. Then, the concept of the multiperspective rough set model is developed. The most prominent feature of this model is the discovery of differences between classes from the given data, without any parameters. Second, by integrating the information theory and algebraic views under the multiperspective rough set model, multiview entropy measures are proposed to effectively measure the uncertainty in data. Moreover, a nonmonotonic feature selection algorithm based on the mutual information in the multiview entropy measures under the neutral perspective as the evaluation function of feature importance is designed to resolve the disadvantages of the algorithms based on the monotone evaluation function. Finally, Information Gain is introduced to preliminarily decrease the dimension of high‐dimensional data sets to promote classification accuracy and reduce time consumption. The experimental results confirm that the proposed algorithm is efficient in eliminating noise and increasing classification accuracy.</description><subject>Algorithms</subject><subject>Classification</subject><subject>Entropy</subject><subject>Entropy (Information theory)</subject><subject>Feature selection</subject><subject>Granulation</subject><subject>information gain</subject><subject>Information theory</subject><subject>Intelligent systems</subject><subject>Mathematical models</subject><subject>multiperspective rough set</subject><subject>multiview entropy measures</subject><subject>nonmonotonicity</subject><subject>Parameters</subject><subject>Rough set models</subject><subject>Uncertainty</subject><issn>0884-8173</issn><issn>1098-111X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQhi0EEqUw8A8sMTGk9VdqZ0QVhUoVDHRgs_JxBldpEmynVf49LunKdCfd874nPQjdUzKjhLC5bcKMMSXVBZpQkqmEUvp5iSZEKZEoKvk1uvF-RwilUqQT9LGCPPQOsIcaymDbBhe5hwrHZd_XwR4sHDE0wbXdgPeQ-wh7bM_XDpzvTrkDYNf2X9-xJ9yiK5PXHu7Oc4q2q-ft8jXZvL-sl0-bpGSZVEmeCgEZN0KJgpvccFOVUAIQnhFIpTFVkVbEsJTKgmdU0sqQKiuYVEoVkvEpehhrO9f-9OCD3rW9a-JHzSRZUCnZQkTqcaRK13rvwOjO2X3uBk2JPinTUZn-UxbZ-cgebQ3D_6Bev23HxC9Vym9l</recordid><startdate>202210</startdate><enddate>202210</enddate><creator>Xu, Jiucheng</creator><creator>Qu, Kanglin</creator><creator>Meng, Xiangru</creator><creator>Sun, Yuanhao</creator><creator>Hou, Qincheng</creator><general>Hindawi Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5062-5012</orcidid></search><sort><creationdate>202210</creationdate><title>Feature selection based on multiview entropy measures in multiperspective rough set</title><author>Xu, Jiucheng ; Qu, Kanglin ; Meng, Xiangru ; Sun, Yuanhao ; Hou, Qincheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2978-a544e93f484b3faf3fdcecee0390e57ffdb5d0f2517b39171df0d9b27888b723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Classification</topic><topic>Entropy</topic><topic>Entropy (Information theory)</topic><topic>Feature selection</topic><topic>Granulation</topic><topic>information gain</topic><topic>Information theory</topic><topic>Intelligent systems</topic><topic>Mathematical models</topic><topic>multiperspective rough set</topic><topic>multiview entropy measures</topic><topic>nonmonotonicity</topic><topic>Parameters</topic><topic>Rough set models</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Jiucheng</creatorcontrib><creatorcontrib>Qu, Kanglin</creatorcontrib><creatorcontrib>Meng, Xiangru</creatorcontrib><creatorcontrib>Sun, Yuanhao</creatorcontrib><creatorcontrib>Hou, Qincheng</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of intelligent systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Jiucheng</au><au>Qu, Kanglin</au><au>Meng, Xiangru</au><au>Sun, Yuanhao</au><au>Hou, Qincheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Feature selection based on multiview entropy measures in multiperspective rough set</atitle><jtitle>International journal of intelligent systems</jtitle><date>2022-10</date><risdate>2022</risdate><volume>37</volume><issue>10</issue><spage>7200</spage><epage>7234</epage><pages>7200-7234</pages><issn>0884-8173</issn><eissn>1098-111X</eissn><abstract>The performance of the neighborhood rough set model in feature selection is limited by nonobjective parameter selection method, the uncertainty measures considered only from a single view, and high time cost caused by processing high‐dimensional data. To solve the above problems, this study first defines the interclass boundary to granulate the samples in different classes, and three types of neighborhood concepts—negative perspective, neutral perspective, and positive perspective—are put forward based on different cognitive perspectives. Then, the concept of the multiperspective rough set model is developed. The most prominent feature of this model is the discovery of differences between classes from the given data, without any parameters. Second, by integrating the information theory and algebraic views under the multiperspective rough set model, multiview entropy measures are proposed to effectively measure the uncertainty in data. Moreover, a nonmonotonic feature selection algorithm based on the mutual information in the multiview entropy measures under the neutral perspective as the evaluation function of feature importance is designed to resolve the disadvantages of the algorithms based on the monotone evaluation function. Finally, Information Gain is introduced to preliminarily decrease the dimension of high‐dimensional data sets to promote classification accuracy and reduce time consumption. The experimental results confirm that the proposed algorithm is efficient in eliminating noise and increasing classification accuracy.</abstract><cop>New York</cop><pub>Hindawi Limited</pub><doi>10.1002/int.22878</doi><tpages>35</tpages><orcidid>https://orcid.org/0000-0002-5062-5012</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0884-8173
ispartof International journal of intelligent systems, 2022-10, Vol.37 (10), p.7200-7234
issn 0884-8173
1098-111X
language eng
recordid cdi_proquest_journals_2706177264
source Wiley Online Library All Journals
subjects Algorithms
Classification
Entropy
Entropy (Information theory)
Feature selection
Granulation
information gain
Information theory
Intelligent systems
Mathematical models
multiperspective rough set
multiview entropy measures
nonmonotonicity
Parameters
Rough set models
Uncertainty
title Feature selection based on multiview entropy measures in multiperspective rough set
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A33%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Feature%20selection%20based%20on%20multiview%20entropy%20measures%20in%20multiperspective%20rough%20set&rft.jtitle=International%20journal%20of%20intelligent%20systems&rft.au=Xu,%20Jiucheng&rft.date=2022-10&rft.volume=37&rft.issue=10&rft.spage=7200&rft.epage=7234&rft.pages=7200-7234&rft.issn=0884-8173&rft.eissn=1098-111X&rft_id=info:doi/10.1002/int.22878&rft_dat=%3Cproquest_cross%3E2706177264%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2706177264&rft_id=info:pmid/&rfr_iscdi=true