A novel belief χ2 ${\chi }^{2}$ divergence for multisource information fusion and its application in pattern classification
Dempster–Shafer (D‐S) evidence theory is invaluable in the domain of multisource information fusion for handing uncertainty problems. However, there may be counter‐intuitive phenomenon when facing highly conflicting information. In this paper, a novel symmetric enhanced belief χ2 ${\chi }^{2}$ diver...
Gespeichert in:
Veröffentlicht in: | International journal of intelligent systems 2022-10, Vol.37 (10), p.7968-7991 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7991 |
---|---|
container_issue | 10 |
container_start_page | 7968 |
container_title | International journal of intelligent systems |
container_volume | 37 |
creator | Zhang, Lang Xiao, Fuyuan |
description | Dempster–Shafer (D‐S) evidence theory is invaluable in the domain of multisource information fusion for handing uncertainty problems. However, there may be counter‐intuitive phenomenon when facing highly conflicting information. In this paper, a novel symmetric enhanced belief χ2 ${\chi }^{2}$ divergence measure, called S
E
B
χ2 $SEB{\chi }^{2}$, is proposed to measure the discrepancy between basic probability assignments (BPAs). The S
E
B
χ2 $SEB{\chi }^{2}$ divergence consider the features of BPAs as the influence of both single‐element subsets and multielement subsets is taken into account. Furthermore, the S
E
B
χ2 $SEB{\chi }^{2}$ divergence is proven to be symmetric, nonnegative and nondegenerate, which are desirable properties for conflict management. Then, a new algorithm for multisource information fusion based on the S
E
B
χ2 $SEB{\chi }^{2}$ divergence measure is derived. Finally, an application for pattern classification is used to illustrate the superiority of the proposed S
E
B
χ2 $SEB{\chi }^{2}$ divergence measure‐based fusion method over other existing well‐known and recent related works with a better classification accuracy of 94.39%. |
doi_str_mv | 10.1002/int.22912 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2706177238</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2706177238</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1422-6d80c3d9b731d47789f4cc08fc0ebb6cdf114758c4fa4c4b728c18485335d1063</originalsourceid><addsrcrecordid>eNp1kL9OwzAQxi0EEqUw8AaW6MKQ1uc4sTNWFX8qVbAUiQERJY4NrlIn2GlRVTrzeLwSKenK9Onu-92d7kPoEsgQCKEjY5shpQnQI9QDkogAAJ6PUY8IwQIBPDxFZ94vCAHgLOqhrzG21VqVOFelURr_fFM82L7Id4N3r1u6G-DCrJV7U1YqrCuHl6uyMb5aubY2tu0ss8ZUFuuV30tmC2waj7O6Lo3sLGNxnTWNchbLMvPe6INzjk50Vnp1cdA-erq9mU_ug9nj3XQyngUSGKVBXAgiwyLJeQgF41wkmklJhJZE5XksCw3AeCQk0xmTLOdUSBBMRGEYFUDisI-uur21qz5Wyjfpon3AtidTykkMnNNQtNR1R0lXee-UTmtnlpnbpEDSfbhpG276F27Ljjr205Rq8z-YTh_m3cQvef99Vg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2706177238</pqid></control><display><type>article</type><title>A novel belief χ2 ${\chi }^{2}$ divergence for multisource information fusion and its application in pattern classification</title><source>Wiley Journals</source><creator>Zhang, Lang ; Xiao, Fuyuan</creator><creatorcontrib>Zhang, Lang ; Xiao, Fuyuan</creatorcontrib><description>Dempster–Shafer (D‐S) evidence theory is invaluable in the domain of multisource information fusion for handing uncertainty problems. However, there may be counter‐intuitive phenomenon when facing highly conflicting information. In this paper, a novel symmetric enhanced belief χ2 ${\chi }^{2}$ divergence measure, called S
E
B
χ2 $SEB{\chi }^{2}$, is proposed to measure the discrepancy between basic probability assignments (BPAs). The S
E
B
χ2 $SEB{\chi }^{2}$ divergence consider the features of BPAs as the influence of both single‐element subsets and multielement subsets is taken into account. Furthermore, the S
E
B
χ2 $SEB{\chi }^{2}$ divergence is proven to be symmetric, nonnegative and nondegenerate, which are desirable properties for conflict management. Then, a new algorithm for multisource information fusion based on the S
E
B
χ2 $SEB{\chi }^{2}$ divergence measure is derived. Finally, an application for pattern classification is used to illustrate the superiority of the proposed S
E
B
χ2 $SEB{\chi }^{2}$ divergence measure‐based fusion method over other existing well‐known and recent related works with a better classification accuracy of 94.39%.</description><identifier>ISSN: 0884-8173</identifier><identifier>EISSN: 1098-111X</identifier><identifier>DOI: 10.1002/int.22912</identifier><language>eng</language><publisher>New York: Hindawi Limited</publisher><subject>Algorithms ; belief function ; Chi-square test ; Data integration ; Dempster–Shafer theory ; evidence conflict ; Intelligent systems ; multisource information fusion ; Pattern classification ; symmetric enhanced belief χ2 divergence ; uncertainty</subject><ispartof>International journal of intelligent systems, 2022-10, Vol.37 (10), p.7968-7991</ispartof><rights>2022 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1422-6d80c3d9b731d47789f4cc08fc0ebb6cdf114758c4fa4c4b728c18485335d1063</citedby><cites>FETCH-LOGICAL-c1422-6d80c3d9b731d47789f4cc08fc0ebb6cdf114758c4fa4c4b728c18485335d1063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fint.22912$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fint.22912$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Zhang, Lang</creatorcontrib><creatorcontrib>Xiao, Fuyuan</creatorcontrib><title>A novel belief χ2 ${\chi }^{2}$ divergence for multisource information fusion and its application in pattern classification</title><title>International journal of intelligent systems</title><description>Dempster–Shafer (D‐S) evidence theory is invaluable in the domain of multisource information fusion for handing uncertainty problems. However, there may be counter‐intuitive phenomenon when facing highly conflicting information. In this paper, a novel symmetric enhanced belief χ2 ${\chi }^{2}$ divergence measure, called S
E
B
χ2 $SEB{\chi }^{2}$, is proposed to measure the discrepancy between basic probability assignments (BPAs). The S
E
B
χ2 $SEB{\chi }^{2}$ divergence consider the features of BPAs as the influence of both single‐element subsets and multielement subsets is taken into account. Furthermore, the S
E
B
χ2 $SEB{\chi }^{2}$ divergence is proven to be symmetric, nonnegative and nondegenerate, which are desirable properties for conflict management. Then, a new algorithm for multisource information fusion based on the S
E
B
χ2 $SEB{\chi }^{2}$ divergence measure is derived. Finally, an application for pattern classification is used to illustrate the superiority of the proposed S
E
B
χ2 $SEB{\chi }^{2}$ divergence measure‐based fusion method over other existing well‐known and recent related works with a better classification accuracy of 94.39%.</description><subject>Algorithms</subject><subject>belief function</subject><subject>Chi-square test</subject><subject>Data integration</subject><subject>Dempster–Shafer theory</subject><subject>evidence conflict</subject><subject>Intelligent systems</subject><subject>multisource information fusion</subject><subject>Pattern classification</subject><subject>symmetric enhanced belief χ2 divergence</subject><subject>uncertainty</subject><issn>0884-8173</issn><issn>1098-111X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kL9OwzAQxi0EEqUw8AaW6MKQ1uc4sTNWFX8qVbAUiQERJY4NrlIn2GlRVTrzeLwSKenK9Onu-92d7kPoEsgQCKEjY5shpQnQI9QDkogAAJ6PUY8IwQIBPDxFZ94vCAHgLOqhrzG21VqVOFelURr_fFM82L7Id4N3r1u6G-DCrJV7U1YqrCuHl6uyMb5aubY2tu0ss8ZUFuuV30tmC2waj7O6Lo3sLGNxnTWNchbLMvPe6INzjk50Vnp1cdA-erq9mU_ug9nj3XQyngUSGKVBXAgiwyLJeQgF41wkmklJhJZE5XksCw3AeCQk0xmTLOdUSBBMRGEYFUDisI-uur21qz5Wyjfpon3AtidTykkMnNNQtNR1R0lXee-UTmtnlpnbpEDSfbhpG276F27Ljjr205Rq8z-YTh_m3cQvef99Vg</recordid><startdate>202210</startdate><enddate>202210</enddate><creator>Zhang, Lang</creator><creator>Xiao, Fuyuan</creator><general>Hindawi Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>202210</creationdate><title>A novel belief χ2 ${\chi }^{2}$ divergence for multisource information fusion and its application in pattern classification</title><author>Zhang, Lang ; Xiao, Fuyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1422-6d80c3d9b731d47789f4cc08fc0ebb6cdf114758c4fa4c4b728c18485335d1063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>belief function</topic><topic>Chi-square test</topic><topic>Data integration</topic><topic>Dempster–Shafer theory</topic><topic>evidence conflict</topic><topic>Intelligent systems</topic><topic>multisource information fusion</topic><topic>Pattern classification</topic><topic>symmetric enhanced belief χ2 divergence</topic><topic>uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Lang</creatorcontrib><creatorcontrib>Xiao, Fuyuan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of intelligent systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Lang</au><au>Xiao, Fuyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel belief χ2 ${\chi }^{2}$ divergence for multisource information fusion and its application in pattern classification</atitle><jtitle>International journal of intelligent systems</jtitle><date>2022-10</date><risdate>2022</risdate><volume>37</volume><issue>10</issue><spage>7968</spage><epage>7991</epage><pages>7968-7991</pages><issn>0884-8173</issn><eissn>1098-111X</eissn><abstract>Dempster–Shafer (D‐S) evidence theory is invaluable in the domain of multisource information fusion for handing uncertainty problems. However, there may be counter‐intuitive phenomenon when facing highly conflicting information. In this paper, a novel symmetric enhanced belief χ2 ${\chi }^{2}$ divergence measure, called S
E
B
χ2 $SEB{\chi }^{2}$, is proposed to measure the discrepancy between basic probability assignments (BPAs). The S
E
B
χ2 $SEB{\chi }^{2}$ divergence consider the features of BPAs as the influence of both single‐element subsets and multielement subsets is taken into account. Furthermore, the S
E
B
χ2 $SEB{\chi }^{2}$ divergence is proven to be symmetric, nonnegative and nondegenerate, which are desirable properties for conflict management. Then, a new algorithm for multisource information fusion based on the S
E
B
χ2 $SEB{\chi }^{2}$ divergence measure is derived. Finally, an application for pattern classification is used to illustrate the superiority of the proposed S
E
B
χ2 $SEB{\chi }^{2}$ divergence measure‐based fusion method over other existing well‐known and recent related works with a better classification accuracy of 94.39%.</abstract><cop>New York</cop><pub>Hindawi Limited</pub><doi>10.1002/int.22912</doi><tpages>24</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0884-8173 |
ispartof | International journal of intelligent systems, 2022-10, Vol.37 (10), p.7968-7991 |
issn | 0884-8173 1098-111X |
language | eng |
recordid | cdi_proquest_journals_2706177238 |
source | Wiley Journals |
subjects | Algorithms belief function Chi-square test Data integration Dempster–Shafer theory evidence conflict Intelligent systems multisource information fusion Pattern classification symmetric enhanced belief χ2 divergence uncertainty |
title | A novel belief χ2 ${\chi }^{2}$ divergence for multisource information fusion and its application in pattern classification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T08%3A56%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20belief%20%CF%872%20$%7B%5Cchi%20%7D%5E%7B2%7D$%20divergence%20for%20multisource%20information%20fusion%20and%20its%20application%20in%20pattern%20classification&rft.jtitle=International%20journal%20of%20intelligent%20systems&rft.au=Zhang,%20Lang&rft.date=2022-10&rft.volume=37&rft.issue=10&rft.spage=7968&rft.epage=7991&rft.pages=7968-7991&rft.issn=0884-8173&rft.eissn=1098-111X&rft_id=info:doi/10.1002/int.22912&rft_dat=%3Cproquest_cross%3E2706177238%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2706177238&rft_id=info:pmid/&rfr_iscdi=true |