A novel belief χ2 ${\chi }^{2}$ divergence for multisource information fusion and its application in pattern classification

Dempster–Shafer (D‐S) evidence theory is invaluable in the domain of multisource information fusion for handing uncertainty problems. However, there may be counter‐intuitive phenomenon when facing highly conflicting information. In this paper, a novel symmetric enhanced belief χ2 ${\chi }^{2}$ diver...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of intelligent systems 2022-10, Vol.37 (10), p.7968-7991
Hauptverfasser: Zhang, Lang, Xiao, Fuyuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7991
container_issue 10
container_start_page 7968
container_title International journal of intelligent systems
container_volume 37
creator Zhang, Lang
Xiao, Fuyuan
description Dempster–Shafer (D‐S) evidence theory is invaluable in the domain of multisource information fusion for handing uncertainty problems. However, there may be counter‐intuitive phenomenon when facing highly conflicting information. In this paper, a novel symmetric enhanced belief χ2 ${\chi }^{2}$ divergence measure, called S E B χ2 $SEB{\chi }^{2}$, is proposed to measure the discrepancy between basic probability assignments (BPAs). The S E B χ2 $SEB{\chi }^{2}$ divergence consider the features of BPAs as the influence of both single‐element subsets and multielement subsets is taken into account. Furthermore, the S E B χ2 $SEB{\chi }^{2}$ divergence is proven to be symmetric, nonnegative and nondegenerate, which are desirable properties for conflict management. Then, a new algorithm for multisource information fusion based on the S E B χ2 $SEB{\chi }^{2}$ divergence measure is derived. Finally, an application for pattern classification is used to illustrate the superiority of the proposed S E B χ2 $SEB{\chi }^{2}$ divergence measure‐based fusion method over other existing well‐known and recent related works with a better classification accuracy of 94.39%.
doi_str_mv 10.1002/int.22912
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2706177238</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2706177238</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1422-6d80c3d9b731d47789f4cc08fc0ebb6cdf114758c4fa4c4b728c18485335d1063</originalsourceid><addsrcrecordid>eNp1kL9OwzAQxi0EEqUw8AaW6MKQ1uc4sTNWFX8qVbAUiQERJY4NrlIn2GlRVTrzeLwSKenK9Onu-92d7kPoEsgQCKEjY5shpQnQI9QDkogAAJ6PUY8IwQIBPDxFZ94vCAHgLOqhrzG21VqVOFelURr_fFM82L7Id4N3r1u6G-DCrJV7U1YqrCuHl6uyMb5aubY2tu0ss8ZUFuuV30tmC2waj7O6Lo3sLGNxnTWNchbLMvPe6INzjk50Vnp1cdA-erq9mU_ug9nj3XQyngUSGKVBXAgiwyLJeQgF41wkmklJhJZE5XksCw3AeCQk0xmTLOdUSBBMRGEYFUDisI-uur21qz5Wyjfpon3AtidTykkMnNNQtNR1R0lXee-UTmtnlpnbpEDSfbhpG276F27Ljjr205Rq8z-YTh_m3cQvef99Vg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2706177238</pqid></control><display><type>article</type><title>A novel belief χ2 ${\chi }^{2}$ divergence for multisource information fusion and its application in pattern classification</title><source>Wiley Journals</source><creator>Zhang, Lang ; Xiao, Fuyuan</creator><creatorcontrib>Zhang, Lang ; Xiao, Fuyuan</creatorcontrib><description>Dempster–Shafer (D‐S) evidence theory is invaluable in the domain of multisource information fusion for handing uncertainty problems. However, there may be counter‐intuitive phenomenon when facing highly conflicting information. In this paper, a novel symmetric enhanced belief χ2 ${\chi }^{2}$ divergence measure, called S E B χ2 $SEB{\chi }^{2}$, is proposed to measure the discrepancy between basic probability assignments (BPAs). The S E B χ2 $SEB{\chi }^{2}$ divergence consider the features of BPAs as the influence of both single‐element subsets and multielement subsets is taken into account. Furthermore, the S E B χ2 $SEB{\chi }^{2}$ divergence is proven to be symmetric, nonnegative and nondegenerate, which are desirable properties for conflict management. Then, a new algorithm for multisource information fusion based on the S E B χ2 $SEB{\chi }^{2}$ divergence measure is derived. Finally, an application for pattern classification is used to illustrate the superiority of the proposed S E B χ2 $SEB{\chi }^{2}$ divergence measure‐based fusion method over other existing well‐known and recent related works with a better classification accuracy of 94.39%.</description><identifier>ISSN: 0884-8173</identifier><identifier>EISSN: 1098-111X</identifier><identifier>DOI: 10.1002/int.22912</identifier><language>eng</language><publisher>New York: Hindawi Limited</publisher><subject>Algorithms ; belief function ; Chi-square test ; Data integration ; Dempster–Shafer theory ; evidence conflict ; Intelligent systems ; multisource information fusion ; Pattern classification ; symmetric enhanced belief χ2 divergence ; uncertainty</subject><ispartof>International journal of intelligent systems, 2022-10, Vol.37 (10), p.7968-7991</ispartof><rights>2022 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1422-6d80c3d9b731d47789f4cc08fc0ebb6cdf114758c4fa4c4b728c18485335d1063</citedby><cites>FETCH-LOGICAL-c1422-6d80c3d9b731d47789f4cc08fc0ebb6cdf114758c4fa4c4b728c18485335d1063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fint.22912$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fint.22912$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Zhang, Lang</creatorcontrib><creatorcontrib>Xiao, Fuyuan</creatorcontrib><title>A novel belief χ2 ${\chi }^{2}$ divergence for multisource information fusion and its application in pattern classification</title><title>International journal of intelligent systems</title><description>Dempster–Shafer (D‐S) evidence theory is invaluable in the domain of multisource information fusion for handing uncertainty problems. However, there may be counter‐intuitive phenomenon when facing highly conflicting information. In this paper, a novel symmetric enhanced belief χ2 ${\chi }^{2}$ divergence measure, called S E B χ2 $SEB{\chi }^{2}$, is proposed to measure the discrepancy between basic probability assignments (BPAs). The S E B χ2 $SEB{\chi }^{2}$ divergence consider the features of BPAs as the influence of both single‐element subsets and multielement subsets is taken into account. Furthermore, the S E B χ2 $SEB{\chi }^{2}$ divergence is proven to be symmetric, nonnegative and nondegenerate, which are desirable properties for conflict management. Then, a new algorithm for multisource information fusion based on the S E B χ2 $SEB{\chi }^{2}$ divergence measure is derived. Finally, an application for pattern classification is used to illustrate the superiority of the proposed S E B χ2 $SEB{\chi }^{2}$ divergence measure‐based fusion method over other existing well‐known and recent related works with a better classification accuracy of 94.39%.</description><subject>Algorithms</subject><subject>belief function</subject><subject>Chi-square test</subject><subject>Data integration</subject><subject>Dempster–Shafer theory</subject><subject>evidence conflict</subject><subject>Intelligent systems</subject><subject>multisource information fusion</subject><subject>Pattern classification</subject><subject>symmetric enhanced belief χ2 divergence</subject><subject>uncertainty</subject><issn>0884-8173</issn><issn>1098-111X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kL9OwzAQxi0EEqUw8AaW6MKQ1uc4sTNWFX8qVbAUiQERJY4NrlIn2GlRVTrzeLwSKenK9Onu-92d7kPoEsgQCKEjY5shpQnQI9QDkogAAJ6PUY8IwQIBPDxFZ94vCAHgLOqhrzG21VqVOFelURr_fFM82L7Id4N3r1u6G-DCrJV7U1YqrCuHl6uyMb5aubY2tu0ss8ZUFuuV30tmC2waj7O6Lo3sLGNxnTWNchbLMvPe6INzjk50Vnp1cdA-erq9mU_ug9nj3XQyngUSGKVBXAgiwyLJeQgF41wkmklJhJZE5XksCw3AeCQk0xmTLOdUSBBMRGEYFUDisI-uur21qz5Wyjfpon3AtidTykkMnNNQtNR1R0lXee-UTmtnlpnbpEDSfbhpG276F27Ljjr205Rq8z-YTh_m3cQvef99Vg</recordid><startdate>202210</startdate><enddate>202210</enddate><creator>Zhang, Lang</creator><creator>Xiao, Fuyuan</creator><general>Hindawi Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>202210</creationdate><title>A novel belief χ2 ${\chi }^{2}$ divergence for multisource information fusion and its application in pattern classification</title><author>Zhang, Lang ; Xiao, Fuyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1422-6d80c3d9b731d47789f4cc08fc0ebb6cdf114758c4fa4c4b728c18485335d1063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>belief function</topic><topic>Chi-square test</topic><topic>Data integration</topic><topic>Dempster–Shafer theory</topic><topic>evidence conflict</topic><topic>Intelligent systems</topic><topic>multisource information fusion</topic><topic>Pattern classification</topic><topic>symmetric enhanced belief χ2 divergence</topic><topic>uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Lang</creatorcontrib><creatorcontrib>Xiao, Fuyuan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of intelligent systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Lang</au><au>Xiao, Fuyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel belief χ2 ${\chi }^{2}$ divergence for multisource information fusion and its application in pattern classification</atitle><jtitle>International journal of intelligent systems</jtitle><date>2022-10</date><risdate>2022</risdate><volume>37</volume><issue>10</issue><spage>7968</spage><epage>7991</epage><pages>7968-7991</pages><issn>0884-8173</issn><eissn>1098-111X</eissn><abstract>Dempster–Shafer (D‐S) evidence theory is invaluable in the domain of multisource information fusion for handing uncertainty problems. However, there may be counter‐intuitive phenomenon when facing highly conflicting information. In this paper, a novel symmetric enhanced belief χ2 ${\chi }^{2}$ divergence measure, called S E B χ2 $SEB{\chi }^{2}$, is proposed to measure the discrepancy between basic probability assignments (BPAs). The S E B χ2 $SEB{\chi }^{2}$ divergence consider the features of BPAs as the influence of both single‐element subsets and multielement subsets is taken into account. Furthermore, the S E B χ2 $SEB{\chi }^{2}$ divergence is proven to be symmetric, nonnegative and nondegenerate, which are desirable properties for conflict management. Then, a new algorithm for multisource information fusion based on the S E B χ2 $SEB{\chi }^{2}$ divergence measure is derived. Finally, an application for pattern classification is used to illustrate the superiority of the proposed S E B χ2 $SEB{\chi }^{2}$ divergence measure‐based fusion method over other existing well‐known and recent related works with a better classification accuracy of 94.39%.</abstract><cop>New York</cop><pub>Hindawi Limited</pub><doi>10.1002/int.22912</doi><tpages>24</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0884-8173
ispartof International journal of intelligent systems, 2022-10, Vol.37 (10), p.7968-7991
issn 0884-8173
1098-111X
language eng
recordid cdi_proquest_journals_2706177238
source Wiley Journals
subjects Algorithms
belief function
Chi-square test
Data integration
Dempster–Shafer theory
evidence conflict
Intelligent systems
multisource information fusion
Pattern classification
symmetric enhanced belief χ2 divergence
uncertainty
title A novel belief χ2 ${\chi }^{2}$ divergence for multisource information fusion and its application in pattern classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T08%3A56%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20belief%20%CF%872%20$%7B%5Cchi%20%7D%5E%7B2%7D$%20divergence%20for%20multisource%20information%20fusion%20and%20its%20application%20in%20pattern%20classification&rft.jtitle=International%20journal%20of%20intelligent%20systems&rft.au=Zhang,%20Lang&rft.date=2022-10&rft.volume=37&rft.issue=10&rft.spage=7968&rft.epage=7991&rft.pages=7968-7991&rft.issn=0884-8173&rft.eissn=1098-111X&rft_id=info:doi/10.1002/int.22912&rft_dat=%3Cproquest_cross%3E2706177238%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2706177238&rft_id=info:pmid/&rfr_iscdi=true