Contribution‐based Federated Learning client selection
Federated Learning (FL), as a privacy‐preserving machine learning paradigm, has been thrusted into the limelight. As a result of the physical bandwidth constraint, only a small number of clients are selected for each round of FL training. However, existing client selection solutions (e.g., the vanil...
Gespeichert in:
Veröffentlicht in: | International journal of intelligent systems 2022-10, Vol.37 (10), p.7235-7260 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7260 |
---|---|
container_issue | 10 |
container_start_page | 7235 |
container_title | International journal of intelligent systems |
container_volume | 37 |
creator | Lin, Weiwei Xu, Yinhai Liu, Bo Li, Dongdong Huang, Tiansheng Shi, Fang |
description | Federated Learning (FL), as a privacy‐preserving machine learning paradigm, has been thrusted into the limelight. As a result of the physical bandwidth constraint, only a small number of clients are selected for each round of FL training. However, existing client selection solutions (e.g., the vanilla random selection) typically ignore the heterogeneous data value of the clients. In this paper, we propose the contribution‐based selection algorithm (Contribution‐Based Exponential‐weight algorithm for Exploration and Exploitation, CBE3), which dynamically updates the selection weights according to the impact of clients' data. As a novel component of CBE3, a scaling factor, which helps maintain a good balance between global model accuracy and convergence speed, is proposed to improve the algorithm's adaptability. Theoretically, we proved the regret bound of the proposed CBE3 algorithm, which demonstrates performance gaps between the CBE3 and the optimal choice. Empirically, extensive experiments conducted on Non‐Independent Identically Distributed data demonstrate the superior performance of CBE3—with up to 10% accuracy improvement compared with K‐Center and Greedy and up to 100% faster convergence compared with the Random algorithm. |
doi_str_mv | 10.1002/int.22879 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2706177206</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2706177206</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3329-30c588009699069d5e017836c2238de0849445907c8a7cc0bc42ad6185220eb53</originalsourceid><addsrcrecordid>eNp10LFOwzAQBmALgUQpDLxBJSaGtGc7ic8jqiggVbAUic1ynCtyFZxip0LdeASekSchJaxMd8P330k_Y5ccphxAzHzopkKg0kdsxEFjxjl_OWYjQMwz5EqesrOUNgCcq7wYMZy3oYu-2nW-Dd-fX5VNVE8WVFO0Xb8tycbgw-vENZ5CN0nUkDvYc3aytk2ii785Zs-L29X8Pls-3T3Mb5aZk1LoTIIrEAF0qTWUui4IuEJZOiEk1gSY6zwvNCiHVjkHlcuFrUuOhRBAVSHH7Gq4u43t-45SZzbtLob-pREKSq6UgLJX14NysU0p0tpso3-zcW84mEMxpi_G_BbT29lgP3xD-_-heXhcDYkfPXtjnw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2706177206</pqid></control><display><type>article</type><title>Contribution‐based Federated Learning client selection</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Lin, Weiwei ; Xu, Yinhai ; Liu, Bo ; Li, Dongdong ; Huang, Tiansheng ; Shi, Fang</creator><creatorcontrib>Lin, Weiwei ; Xu, Yinhai ; Liu, Bo ; Li, Dongdong ; Huang, Tiansheng ; Shi, Fang</creatorcontrib><description>Federated Learning (FL), as a privacy‐preserving machine learning paradigm, has been thrusted into the limelight. As a result of the physical bandwidth constraint, only a small number of clients are selected for each round of FL training. However, existing client selection solutions (e.g., the vanilla random selection) typically ignore the heterogeneous data value of the clients. In this paper, we propose the contribution‐based selection algorithm (Contribution‐Based Exponential‐weight algorithm for Exploration and Exploitation, CBE3), which dynamically updates the selection weights according to the impact of clients' data. As a novel component of CBE3, a scaling factor, which helps maintain a good balance between global model accuracy and convergence speed, is proposed to improve the algorithm's adaptability. Theoretically, we proved the regret bound of the proposed CBE3 algorithm, which demonstrates performance gaps between the CBE3 and the optimal choice. Empirically, extensive experiments conducted on Non‐Independent Identically Distributed data demonstrate the superior performance of CBE3—with up to 10% accuracy improvement compared with K‐Center and Greedy and up to 100% faster convergence compared with the Random algorithm.</description><identifier>ISSN: 0884-8173</identifier><identifier>EISSN: 1098-111X</identifier><identifier>DOI: 10.1002/int.22879</identifier><language>eng</language><publisher>New York: Hindawi Limited</publisher><subject>Algorithms ; client ; Clients ; contribution‐based, EXP3 ; Convergence ; Decision theory ; Federated Learning ; global models ; Intelligent systems ; Machine learning ; Model accuracy ; Non‐Independent Identically Distributed ; Scaling factors</subject><ispartof>International journal of intelligent systems, 2022-10, Vol.37 (10), p.7235-7260</ispartof><rights>2022 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3329-30c588009699069d5e017836c2238de0849445907c8a7cc0bc42ad6185220eb53</citedby><cites>FETCH-LOGICAL-c3329-30c588009699069d5e017836c2238de0849445907c8a7cc0bc42ad6185220eb53</cites><orcidid>0000-0001-6876-1795</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fint.22879$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fint.22879$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Lin, Weiwei</creatorcontrib><creatorcontrib>Xu, Yinhai</creatorcontrib><creatorcontrib>Liu, Bo</creatorcontrib><creatorcontrib>Li, Dongdong</creatorcontrib><creatorcontrib>Huang, Tiansheng</creatorcontrib><creatorcontrib>Shi, Fang</creatorcontrib><title>Contribution‐based Federated Learning client selection</title><title>International journal of intelligent systems</title><description>Federated Learning (FL), as a privacy‐preserving machine learning paradigm, has been thrusted into the limelight. As a result of the physical bandwidth constraint, only a small number of clients are selected for each round of FL training. However, existing client selection solutions (e.g., the vanilla random selection) typically ignore the heterogeneous data value of the clients. In this paper, we propose the contribution‐based selection algorithm (Contribution‐Based Exponential‐weight algorithm for Exploration and Exploitation, CBE3), which dynamically updates the selection weights according to the impact of clients' data. As a novel component of CBE3, a scaling factor, which helps maintain a good balance between global model accuracy and convergence speed, is proposed to improve the algorithm's adaptability. Theoretically, we proved the regret bound of the proposed CBE3 algorithm, which demonstrates performance gaps between the CBE3 and the optimal choice. Empirically, extensive experiments conducted on Non‐Independent Identically Distributed data demonstrate the superior performance of CBE3—with up to 10% accuracy improvement compared with K‐Center and Greedy and up to 100% faster convergence compared with the Random algorithm.</description><subject>Algorithms</subject><subject>client</subject><subject>Clients</subject><subject>contribution‐based, EXP3</subject><subject>Convergence</subject><subject>Decision theory</subject><subject>Federated Learning</subject><subject>global models</subject><subject>Intelligent systems</subject><subject>Machine learning</subject><subject>Model accuracy</subject><subject>Non‐Independent Identically Distributed</subject><subject>Scaling factors</subject><issn>0884-8173</issn><issn>1098-111X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp10LFOwzAQBmALgUQpDLxBJSaGtGc7ic8jqiggVbAUic1ynCtyFZxip0LdeASekSchJaxMd8P330k_Y5ccphxAzHzopkKg0kdsxEFjxjl_OWYjQMwz5EqesrOUNgCcq7wYMZy3oYu-2nW-Dd-fX5VNVE8WVFO0Xb8tycbgw-vENZ5CN0nUkDvYc3aytk2ii785Zs-L29X8Pls-3T3Mb5aZk1LoTIIrEAF0qTWUui4IuEJZOiEk1gSY6zwvNCiHVjkHlcuFrUuOhRBAVSHH7Gq4u43t-45SZzbtLob-pREKSq6UgLJX14NysU0p0tpso3-zcW84mEMxpi_G_BbT29lgP3xD-_-heXhcDYkfPXtjnw</recordid><startdate>202210</startdate><enddate>202210</enddate><creator>Lin, Weiwei</creator><creator>Xu, Yinhai</creator><creator>Liu, Bo</creator><creator>Li, Dongdong</creator><creator>Huang, Tiansheng</creator><creator>Shi, Fang</creator><general>Hindawi Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6876-1795</orcidid></search><sort><creationdate>202210</creationdate><title>Contribution‐based Federated Learning client selection</title><author>Lin, Weiwei ; Xu, Yinhai ; Liu, Bo ; Li, Dongdong ; Huang, Tiansheng ; Shi, Fang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3329-30c588009699069d5e017836c2238de0849445907c8a7cc0bc42ad6185220eb53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>client</topic><topic>Clients</topic><topic>contribution‐based, EXP3</topic><topic>Convergence</topic><topic>Decision theory</topic><topic>Federated Learning</topic><topic>global models</topic><topic>Intelligent systems</topic><topic>Machine learning</topic><topic>Model accuracy</topic><topic>Non‐Independent Identically Distributed</topic><topic>Scaling factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Weiwei</creatorcontrib><creatorcontrib>Xu, Yinhai</creatorcontrib><creatorcontrib>Liu, Bo</creatorcontrib><creatorcontrib>Li, Dongdong</creatorcontrib><creatorcontrib>Huang, Tiansheng</creatorcontrib><creatorcontrib>Shi, Fang</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of intelligent systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Weiwei</au><au>Xu, Yinhai</au><au>Liu, Bo</au><au>Li, Dongdong</au><au>Huang, Tiansheng</au><au>Shi, Fang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Contribution‐based Federated Learning client selection</atitle><jtitle>International journal of intelligent systems</jtitle><date>2022-10</date><risdate>2022</risdate><volume>37</volume><issue>10</issue><spage>7235</spage><epage>7260</epage><pages>7235-7260</pages><issn>0884-8173</issn><eissn>1098-111X</eissn><abstract>Federated Learning (FL), as a privacy‐preserving machine learning paradigm, has been thrusted into the limelight. As a result of the physical bandwidth constraint, only a small number of clients are selected for each round of FL training. However, existing client selection solutions (e.g., the vanilla random selection) typically ignore the heterogeneous data value of the clients. In this paper, we propose the contribution‐based selection algorithm (Contribution‐Based Exponential‐weight algorithm for Exploration and Exploitation, CBE3), which dynamically updates the selection weights according to the impact of clients' data. As a novel component of CBE3, a scaling factor, which helps maintain a good balance between global model accuracy and convergence speed, is proposed to improve the algorithm's adaptability. Theoretically, we proved the regret bound of the proposed CBE3 algorithm, which demonstrates performance gaps between the CBE3 and the optimal choice. Empirically, extensive experiments conducted on Non‐Independent Identically Distributed data demonstrate the superior performance of CBE3—with up to 10% accuracy improvement compared with K‐Center and Greedy and up to 100% faster convergence compared with the Random algorithm.</abstract><cop>New York</cop><pub>Hindawi Limited</pub><doi>10.1002/int.22879</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0001-6876-1795</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0884-8173 |
ispartof | International journal of intelligent systems, 2022-10, Vol.37 (10), p.7235-7260 |
issn | 0884-8173 1098-111X |
language | eng |
recordid | cdi_proquest_journals_2706177206 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Algorithms client Clients contribution‐based, EXP3 Convergence Decision theory Federated Learning global models Intelligent systems Machine learning Model accuracy Non‐Independent Identically Distributed Scaling factors |
title | Contribution‐based Federated Learning client selection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T19%3A17%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Contribution%E2%80%90based%20Federated%20Learning%20client%20selection&rft.jtitle=International%20journal%20of%20intelligent%20systems&rft.au=Lin,%20Weiwei&rft.date=2022-10&rft.volume=37&rft.issue=10&rft.spage=7235&rft.epage=7260&rft.pages=7235-7260&rft.issn=0884-8173&rft.eissn=1098-111X&rft_id=info:doi/10.1002/int.22879&rft_dat=%3Cproquest_cross%3E2706177206%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2706177206&rft_id=info:pmid/&rfr_iscdi=true |