Structural Optimization of Sorghum Straw Powder/ZnO/PVA Nanocomposite Films

This study sought to improve the utilization of sorghum straw resources and promote the industrial production of new biomass materials. Herein, we fabricated SSP/ZnO/PVA nanocomposite films from sorghum straw powder (SSP), corn starch, polyvinyl alcohol (PVA), and nanostructured ZnO via the casting...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Coatings (Basel) 2022-08, Vol.12 (8), p.1226
Hauptverfasser: Li, Juan, Zhang, Guantao, Zhang, Dongjie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page 1226
container_title Coatings (Basel)
container_volume 12
creator Li, Juan
Zhang, Guantao
Zhang, Dongjie
description This study sought to improve the utilization of sorghum straw resources and promote the industrial production of new biomass materials. Herein, we fabricated SSP/ZnO/PVA nanocomposite films from sorghum straw powder (SSP), corn starch, polyvinyl alcohol (PVA), and nanostructured ZnO via the casting method. Then, we used response surface methodology to examine the effects of the mass concentrations of SSP, glycerol (Gly), and nanostructured ZnO, as well as the starch–PVA mass ratio on the tensile strength (TS) and water vapor permeability (WVP) of the SSP/ZnO/PVA nanocomposite films. The optimum preparation conditions were as follows: SSP mass concentration of 2.0 g/150 mL, Gly mass concentration of 2.5 g/150 mL, starch–PVA mass ratio of 6:4.5, and nanostructured ZnO mass concentration of 0.7 g/150 mL. The TS and WVP of the prepared films were 47.57% higher and 27.07% lower, respectively, than those of ZnO/PVA composite films without SSP. Scanning electron microscopy and atomic force microscopy showed that the SSP/ZnO/PVA nanocomposite films had smooth surfaces and dense cross-sections, without obvious delamination or phase separation. Fourier transform infrared spectroscopy, X-ray diffraction, and thermogravimetric analyses revealed that SSP was highly compatible with the ZnO/PVA matrix. Thus, SSP addition could improve the crystallinity, thermal stability, and matrix interactions of SSP/ZnO/PVA nanocomposite films.
doi_str_mv 10.3390/coatings12081226
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2706151253</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745502074</galeid><sourcerecordid>A745502074</sourcerecordid><originalsourceid>FETCH-LOGICAL-c282t-fbfec53d6299b13f26757b15e9d85b43e893f868f6ff99c1d0835ddb65365cb83</originalsourceid><addsrcrecordid>eNpdUM1LwzAUD6LgmLt7LHjulo8mTY5jOBWHG0w9eCltmsyMtqlJytC_3kg9iO8d3uPx--D9ALhGcE6IgAtpy2C6g0cYcoQxOwMTDHORsgzh8z_7JZh5f4SxBCIciQl43Ac3yDC4skm2fTCt-YpStkusTvbWHd6HNomQ8pTs7KlWbvHWbRe712XyVHZW2ra33gSVrE3T-itwocvGq9nvnIKX9e3z6j7dbO8eVstNKjHHIdWVVpKSmmEhKkQ0ZjnNK0SVqDmtMqK4IJozrpnWQkhUQ05oXVeMEkZlxckU3Iy6vbMfg_KhONrBddGywDlkiCJMSUTNR9ShbFRhOm3jGzJ2rVojbae0ifdlnlEKY0BZJMCRIJ313ild9M60pfssECx-Yi7-x0y-AZbQcXA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2706151253</pqid></control><display><type>article</type><title>Structural Optimization of Sorghum Straw Powder/ZnO/PVA Nanocomposite Films</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Li, Juan ; Zhang, Guantao ; Zhang, Dongjie</creator><creatorcontrib>Li, Juan ; Zhang, Guantao ; Zhang, Dongjie</creatorcontrib><description>This study sought to improve the utilization of sorghum straw resources and promote the industrial production of new biomass materials. Herein, we fabricated SSP/ZnO/PVA nanocomposite films from sorghum straw powder (SSP), corn starch, polyvinyl alcohol (PVA), and nanostructured ZnO via the casting method. Then, we used response surface methodology to examine the effects of the mass concentrations of SSP, glycerol (Gly), and nanostructured ZnO, as well as the starch–PVA mass ratio on the tensile strength (TS) and water vapor permeability (WVP) of the SSP/ZnO/PVA nanocomposite films. The optimum preparation conditions were as follows: SSP mass concentration of 2.0 g/150 mL, Gly mass concentration of 2.5 g/150 mL, starch–PVA mass ratio of 6:4.5, and nanostructured ZnO mass concentration of 0.7 g/150 mL. The TS and WVP of the prepared films were 47.57% higher and 27.07% lower, respectively, than those of ZnO/PVA composite films without SSP. Scanning electron microscopy and atomic force microscopy showed that the SSP/ZnO/PVA nanocomposite films had smooth surfaces and dense cross-sections, without obvious delamination or phase separation. Fourier transform infrared spectroscopy, X-ray diffraction, and thermogravimetric analyses revealed that SSP was highly compatible with the ZnO/PVA matrix. Thus, SSP addition could improve the crystallinity, thermal stability, and matrix interactions of SSP/ZnO/PVA nanocomposite films.</description><identifier>ISSN: 2079-6412</identifier><identifier>EISSN: 2079-6412</identifier><identifier>DOI: 10.3390/coatings12081226</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Analysis ; Atomic force microscopy ; Biomass ; Cellulose ; Composite materials ; Founding ; Fourier transforms ; Glycerin ; Glycerol ; Infrared analysis ; Mechanical properties ; Microscopy ; Nanocomposites ; Nanostructure ; Optimization ; Permeability ; Phase separation ; Polymerization ; Polymers ; Polyvinyl alcohol ; Response surface methodology ; Scanning electron microscopy ; Sorghum ; Tensile strength ; Test methods ; Thermal stability ; Thermogravimetric analysis ; Water vapor ; Zinc oxide</subject><ispartof>Coatings (Basel), 2022-08, Vol.12 (8), p.1226</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c282t-fbfec53d6299b13f26757b15e9d85b43e893f868f6ff99c1d0835ddb65365cb83</citedby><cites>FETCH-LOGICAL-c282t-fbfec53d6299b13f26757b15e9d85b43e893f868f6ff99c1d0835ddb65365cb83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Li, Juan</creatorcontrib><creatorcontrib>Zhang, Guantao</creatorcontrib><creatorcontrib>Zhang, Dongjie</creatorcontrib><title>Structural Optimization of Sorghum Straw Powder/ZnO/PVA Nanocomposite Films</title><title>Coatings (Basel)</title><description>This study sought to improve the utilization of sorghum straw resources and promote the industrial production of new biomass materials. Herein, we fabricated SSP/ZnO/PVA nanocomposite films from sorghum straw powder (SSP), corn starch, polyvinyl alcohol (PVA), and nanostructured ZnO via the casting method. Then, we used response surface methodology to examine the effects of the mass concentrations of SSP, glycerol (Gly), and nanostructured ZnO, as well as the starch–PVA mass ratio on the tensile strength (TS) and water vapor permeability (WVP) of the SSP/ZnO/PVA nanocomposite films. The optimum preparation conditions were as follows: SSP mass concentration of 2.0 g/150 mL, Gly mass concentration of 2.5 g/150 mL, starch–PVA mass ratio of 6:4.5, and nanostructured ZnO mass concentration of 0.7 g/150 mL. The TS and WVP of the prepared films were 47.57% higher and 27.07% lower, respectively, than those of ZnO/PVA composite films without SSP. Scanning electron microscopy and atomic force microscopy showed that the SSP/ZnO/PVA nanocomposite films had smooth surfaces and dense cross-sections, without obvious delamination or phase separation. Fourier transform infrared spectroscopy, X-ray diffraction, and thermogravimetric analyses revealed that SSP was highly compatible with the ZnO/PVA matrix. Thus, SSP addition could improve the crystallinity, thermal stability, and matrix interactions of SSP/ZnO/PVA nanocomposite films.</description><subject>Analysis</subject><subject>Atomic force microscopy</subject><subject>Biomass</subject><subject>Cellulose</subject><subject>Composite materials</subject><subject>Founding</subject><subject>Fourier transforms</subject><subject>Glycerin</subject><subject>Glycerol</subject><subject>Infrared analysis</subject><subject>Mechanical properties</subject><subject>Microscopy</subject><subject>Nanocomposites</subject><subject>Nanostructure</subject><subject>Optimization</subject><subject>Permeability</subject><subject>Phase separation</subject><subject>Polymerization</subject><subject>Polymers</subject><subject>Polyvinyl alcohol</subject><subject>Response surface methodology</subject><subject>Scanning electron microscopy</subject><subject>Sorghum</subject><subject>Tensile strength</subject><subject>Test methods</subject><subject>Thermal stability</subject><subject>Thermogravimetric analysis</subject><subject>Water vapor</subject><subject>Zinc oxide</subject><issn>2079-6412</issn><issn>2079-6412</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdUM1LwzAUD6LgmLt7LHjulo8mTY5jOBWHG0w9eCltmsyMtqlJytC_3kg9iO8d3uPx--D9ALhGcE6IgAtpy2C6g0cYcoQxOwMTDHORsgzh8z_7JZh5f4SxBCIciQl43Ac3yDC4skm2fTCt-YpStkusTvbWHd6HNomQ8pTs7KlWbvHWbRe712XyVHZW2ra33gSVrE3T-itwocvGq9nvnIKX9e3z6j7dbO8eVstNKjHHIdWVVpKSmmEhKkQ0ZjnNK0SVqDmtMqK4IJozrpnWQkhUQ05oXVeMEkZlxckU3Iy6vbMfg_KhONrBddGywDlkiCJMSUTNR9ShbFRhOm3jGzJ2rVojbae0ifdlnlEKY0BZJMCRIJ313ild9M60pfssECx-Yi7-x0y-AZbQcXA</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Li, Juan</creator><creator>Zhang, Guantao</creator><creator>Zhang, Dongjie</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20220801</creationdate><title>Structural Optimization of Sorghum Straw Powder/ZnO/PVA Nanocomposite Films</title><author>Li, Juan ; Zhang, Guantao ; Zhang, Dongjie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c282t-fbfec53d6299b13f26757b15e9d85b43e893f868f6ff99c1d0835ddb65365cb83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analysis</topic><topic>Atomic force microscopy</topic><topic>Biomass</topic><topic>Cellulose</topic><topic>Composite materials</topic><topic>Founding</topic><topic>Fourier transforms</topic><topic>Glycerin</topic><topic>Glycerol</topic><topic>Infrared analysis</topic><topic>Mechanical properties</topic><topic>Microscopy</topic><topic>Nanocomposites</topic><topic>Nanostructure</topic><topic>Optimization</topic><topic>Permeability</topic><topic>Phase separation</topic><topic>Polymerization</topic><topic>Polymers</topic><topic>Polyvinyl alcohol</topic><topic>Response surface methodology</topic><topic>Scanning electron microscopy</topic><topic>Sorghum</topic><topic>Tensile strength</topic><topic>Test methods</topic><topic>Thermal stability</topic><topic>Thermogravimetric analysis</topic><topic>Water vapor</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Juan</creatorcontrib><creatorcontrib>Zhang, Guantao</creatorcontrib><creatorcontrib>Zhang, Dongjie</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Coatings (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Juan</au><au>Zhang, Guantao</au><au>Zhang, Dongjie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural Optimization of Sorghum Straw Powder/ZnO/PVA Nanocomposite Films</atitle><jtitle>Coatings (Basel)</jtitle><date>2022-08-01</date><risdate>2022</risdate><volume>12</volume><issue>8</issue><spage>1226</spage><pages>1226-</pages><issn>2079-6412</issn><eissn>2079-6412</eissn><abstract>This study sought to improve the utilization of sorghum straw resources and promote the industrial production of new biomass materials. Herein, we fabricated SSP/ZnO/PVA nanocomposite films from sorghum straw powder (SSP), corn starch, polyvinyl alcohol (PVA), and nanostructured ZnO via the casting method. Then, we used response surface methodology to examine the effects of the mass concentrations of SSP, glycerol (Gly), and nanostructured ZnO, as well as the starch–PVA mass ratio on the tensile strength (TS) and water vapor permeability (WVP) of the SSP/ZnO/PVA nanocomposite films. The optimum preparation conditions were as follows: SSP mass concentration of 2.0 g/150 mL, Gly mass concentration of 2.5 g/150 mL, starch–PVA mass ratio of 6:4.5, and nanostructured ZnO mass concentration of 0.7 g/150 mL. The TS and WVP of the prepared films were 47.57% higher and 27.07% lower, respectively, than those of ZnO/PVA composite films without SSP. Scanning electron microscopy and atomic force microscopy showed that the SSP/ZnO/PVA nanocomposite films had smooth surfaces and dense cross-sections, without obvious delamination or phase separation. Fourier transform infrared spectroscopy, X-ray diffraction, and thermogravimetric analyses revealed that SSP was highly compatible with the ZnO/PVA matrix. Thus, SSP addition could improve the crystallinity, thermal stability, and matrix interactions of SSP/ZnO/PVA nanocomposite films.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/coatings12081226</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-6412
ispartof Coatings (Basel), 2022-08, Vol.12 (8), p.1226
issn 2079-6412
2079-6412
language eng
recordid cdi_proquest_journals_2706151253
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Analysis
Atomic force microscopy
Biomass
Cellulose
Composite materials
Founding
Fourier transforms
Glycerin
Glycerol
Infrared analysis
Mechanical properties
Microscopy
Nanocomposites
Nanostructure
Optimization
Permeability
Phase separation
Polymerization
Polymers
Polyvinyl alcohol
Response surface methodology
Scanning electron microscopy
Sorghum
Tensile strength
Test methods
Thermal stability
Thermogravimetric analysis
Water vapor
Zinc oxide
title Structural Optimization of Sorghum Straw Powder/ZnO/PVA Nanocomposite Films
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T06%3A33%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20Optimization%20of%20Sorghum%20Straw%20Powder/ZnO/PVA%20Nanocomposite%20Films&rft.jtitle=Coatings%20(Basel)&rft.au=Li,%20Juan&rft.date=2022-08-01&rft.volume=12&rft.issue=8&rft.spage=1226&rft.pages=1226-&rft.issn=2079-6412&rft.eissn=2079-6412&rft_id=info:doi/10.3390/coatings12081226&rft_dat=%3Cgale_proqu%3EA745502074%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2706151253&rft_id=info:pmid/&rft_galeid=A745502074&rfr_iscdi=true