Modeling the impact of land cover changes on water balance in the Vea catchment of Ghana, 1985–2040

The ensuing effect of global land use changes on watershed hydrology is enormous, particularly in rapidly developing countries such as Ghana. Understanding how watershed land use dynamics influence hydrology is essential to devising effective land and water resources management strategies. This stud...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainable water resources management 2022-10, Vol.8 (5), Article 148
Hauptverfasser: Atullley, Joan A., Kwaku, Adjei A., Owusu-Ansah, Emanuel D. J., Ampofo, Steve, Jacob, Analem, Nii, Odai S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page
container_title Sustainable water resources management
container_volume 8
creator Atullley, Joan A.
Kwaku, Adjei A.
Owusu-Ansah, Emanuel D. J.
Ampofo, Steve
Jacob, Analem
Nii, Odai S.
description The ensuing effect of global land use changes on watershed hydrology is enormous, particularly in rapidly developing countries such as Ghana. Understanding how watershed land use dynamics influence hydrology is essential to devising effective land and water resources management strategies. This study evaluated the impact of land-use changes on hydrological components in the Vea catchment of Ghana from 1986 to 2040 using the Cellular Automata (CA)-Markov chain model for land change modeling and Soil Water Assessment Tool (SWAT) for hydrological modeling. The models performed satisfactorily with NSE values of 0.74 and 0.78 for calibration and validation, respectively, in SWAT and an overall Kappa value of 0.89 in CA-Markov. The land cover change analysis revealed a continuous increase in farmland and built-up areas alongside decreasing savanah forest which resulted in increased Curved Numbers (CN) from 81 in 1986 to 86 in 2040. Consequently, ET and baseflow decreased by − 7.8% and − 26.2%, respectively, while surface runoff, and water yield increased by 46.9%, and 5.1%, respectively. Despite the general decline in baseflow, the seasonal trend showed an extention to January, indicating adequate storage of water in the shallow aquifer that can be extracted for dry season gardening. While vegetation restoration is critical to reducing eroded sediment yield to guarantee reservoir storage, constructing dams and dugouts to harness the high surface runoff for irrigation and livestock watering in the long dry season is also needful.
doi_str_mv 10.1007/s40899-022-00727-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2705978743</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2705978743</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-a15b8056b1d5d20f16a16fb55ae4071d3d8b6ded1f5594ee504855d1aa7a14a73</originalsourceid><addsrcrecordid>eNp9kM9OAyEQh4nRxKb2BTyReHV1gGVZjqbR1qTGi3ols8D2T9rdCluNN9_BN_RJxK7Rmydg-H0zmY-QUwYXDEBdxhxKrTPgPEtPrjJ9QAZcFCKTkMvD37tQx2QU4woAmCwLrfSA-LvW-fWymdNu4elys0Xb0bama2wcte2LD9QusJn7SNuGvmKXChWmX5vSzR568kgtdnax8c2enSQAzynTpfx8_-CQwwk5qnEd_ejnHJLHm-uH8TSb3U9ux1ezzAqmuwyZrEqQRcWcdBxqViAr6kpK9Dko5oQrq8J5x2opde59Wq-U0jFEhSxHJYbkrO-7De3zzsfOrNpdaNJIwxVIrUqVi5TifcqGNsbga7MNyw2GN8PAfBs1vVGTjJq9UaMTJHoopnDyEf5a_0N9AUKed3U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2705978743</pqid></control><display><type>article</type><title>Modeling the impact of land cover changes on water balance in the Vea catchment of Ghana, 1985–2040</title><source>SpringerNature Journals</source><creator>Atullley, Joan A. ; Kwaku, Adjei A. ; Owusu-Ansah, Emanuel D. J. ; Ampofo, Steve ; Jacob, Analem ; Nii, Odai S.</creator><creatorcontrib>Atullley, Joan A. ; Kwaku, Adjei A. ; Owusu-Ansah, Emanuel D. J. ; Ampofo, Steve ; Jacob, Analem ; Nii, Odai S.</creatorcontrib><description>The ensuing effect of global land use changes on watershed hydrology is enormous, particularly in rapidly developing countries such as Ghana. Understanding how watershed land use dynamics influence hydrology is essential to devising effective land and water resources management strategies. This study evaluated the impact of land-use changes on hydrological components in the Vea catchment of Ghana from 1986 to 2040 using the Cellular Automata (CA)-Markov chain model for land change modeling and Soil Water Assessment Tool (SWAT) for hydrological modeling. The models performed satisfactorily with NSE values of 0.74 and 0.78 for calibration and validation, respectively, in SWAT and an overall Kappa value of 0.89 in CA-Markov. The land cover change analysis revealed a continuous increase in farmland and built-up areas alongside decreasing savanah forest which resulted in increased Curved Numbers (CN) from 81 in 1986 to 86 in 2040. Consequently, ET and baseflow decreased by − 7.8% and − 26.2%, respectively, while surface runoff, and water yield increased by 46.9%, and 5.1%, respectively. Despite the general decline in baseflow, the seasonal trend showed an extention to January, indicating adequate storage of water in the shallow aquifer that can be extracted for dry season gardening. While vegetation restoration is critical to reducing eroded sediment yield to guarantee reservoir storage, constructing dams and dugouts to harness the high surface runoff for irrigation and livestock watering in the long dry season is also needful.</description><identifier>ISSN: 2363-5037</identifier><identifier>EISSN: 2363-5045</identifier><identifier>DOI: 10.1007/s40899-022-00727-9</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Agricultural land ; Aquifers ; Base flow ; Catchment area ; Cellular automata ; Dam construction ; Developing countries ; Development Economics ; Dry season ; Earth and Environmental Science ; Earth Sciences ; Gardening ; Hydrogeology ; Hydrology ; Hydrology/Water Resources ; Land cover ; Land use ; LDCs ; Livestock ; Markov chains ; Mathematical models ; Modelling ; Moisture content ; Original Article ; Reservoir construction ; Reservoir storage ; Restoration ; Runoff ; Sediment yield ; Soil water ; Surface runoff ; Sustainable Development ; Water balance ; Water Policy/Water Governance/Water Management ; Water resources ; Water resources management ; Water yield ; Watersheds</subject><ispartof>Sustainable water resources management, 2022-10, Vol.8 (5), Article 148</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-a15b8056b1d5d20f16a16fb55ae4071d3d8b6ded1f5594ee504855d1aa7a14a73</citedby><cites>FETCH-LOGICAL-c319t-a15b8056b1d5d20f16a16fb55ae4071d3d8b6ded1f5594ee504855d1aa7a14a73</cites><orcidid>0000-0001-7334-3221</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40899-022-00727-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40899-022-00727-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Atullley, Joan A.</creatorcontrib><creatorcontrib>Kwaku, Adjei A.</creatorcontrib><creatorcontrib>Owusu-Ansah, Emanuel D. J.</creatorcontrib><creatorcontrib>Ampofo, Steve</creatorcontrib><creatorcontrib>Jacob, Analem</creatorcontrib><creatorcontrib>Nii, Odai S.</creatorcontrib><title>Modeling the impact of land cover changes on water balance in the Vea catchment of Ghana, 1985–2040</title><title>Sustainable water resources management</title><addtitle>Sustain. Water Resour. Manag</addtitle><description>The ensuing effect of global land use changes on watershed hydrology is enormous, particularly in rapidly developing countries such as Ghana. Understanding how watershed land use dynamics influence hydrology is essential to devising effective land and water resources management strategies. This study evaluated the impact of land-use changes on hydrological components in the Vea catchment of Ghana from 1986 to 2040 using the Cellular Automata (CA)-Markov chain model for land change modeling and Soil Water Assessment Tool (SWAT) for hydrological modeling. The models performed satisfactorily with NSE values of 0.74 and 0.78 for calibration and validation, respectively, in SWAT and an overall Kappa value of 0.89 in CA-Markov. The land cover change analysis revealed a continuous increase in farmland and built-up areas alongside decreasing savanah forest which resulted in increased Curved Numbers (CN) from 81 in 1986 to 86 in 2040. Consequently, ET and baseflow decreased by − 7.8% and − 26.2%, respectively, while surface runoff, and water yield increased by 46.9%, and 5.1%, respectively. Despite the general decline in baseflow, the seasonal trend showed an extention to January, indicating adequate storage of water in the shallow aquifer that can be extracted for dry season gardening. While vegetation restoration is critical to reducing eroded sediment yield to guarantee reservoir storage, constructing dams and dugouts to harness the high surface runoff for irrigation and livestock watering in the long dry season is also needful.</description><subject>Agricultural land</subject><subject>Aquifers</subject><subject>Base flow</subject><subject>Catchment area</subject><subject>Cellular automata</subject><subject>Dam construction</subject><subject>Developing countries</subject><subject>Development Economics</subject><subject>Dry season</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Gardening</subject><subject>Hydrogeology</subject><subject>Hydrology</subject><subject>Hydrology/Water Resources</subject><subject>Land cover</subject><subject>Land use</subject><subject>LDCs</subject><subject>Livestock</subject><subject>Markov chains</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Moisture content</subject><subject>Original Article</subject><subject>Reservoir construction</subject><subject>Reservoir storage</subject><subject>Restoration</subject><subject>Runoff</subject><subject>Sediment yield</subject><subject>Soil water</subject><subject>Surface runoff</subject><subject>Sustainable Development</subject><subject>Water balance</subject><subject>Water Policy/Water Governance/Water Management</subject><subject>Water resources</subject><subject>Water resources management</subject><subject>Water yield</subject><subject>Watersheds</subject><issn>2363-5037</issn><issn>2363-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kM9OAyEQh4nRxKb2BTyReHV1gGVZjqbR1qTGi3ols8D2T9rdCluNN9_BN_RJxK7Rmydg-H0zmY-QUwYXDEBdxhxKrTPgPEtPrjJ9QAZcFCKTkMvD37tQx2QU4woAmCwLrfSA-LvW-fWymdNu4elys0Xb0bama2wcte2LD9QusJn7SNuGvmKXChWmX5vSzR568kgtdnax8c2enSQAzynTpfx8_-CQwwk5qnEd_ejnHJLHm-uH8TSb3U9ux1ezzAqmuwyZrEqQRcWcdBxqViAr6kpK9Dko5oQrq8J5x2opde59Wq-U0jFEhSxHJYbkrO-7De3zzsfOrNpdaNJIwxVIrUqVi5TifcqGNsbga7MNyw2GN8PAfBs1vVGTjJq9UaMTJHoopnDyEf5a_0N9AUKed3U</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Atullley, Joan A.</creator><creator>Kwaku, Adjei A.</creator><creator>Owusu-Ansah, Emanuel D. J.</creator><creator>Ampofo, Steve</creator><creator>Jacob, Analem</creator><creator>Nii, Odai S.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>H97</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><orcidid>https://orcid.org/0000-0001-7334-3221</orcidid></search><sort><creationdate>20221001</creationdate><title>Modeling the impact of land cover changes on water balance in the Vea catchment of Ghana, 1985–2040</title><author>Atullley, Joan A. ; Kwaku, Adjei A. ; Owusu-Ansah, Emanuel D. J. ; Ampofo, Steve ; Jacob, Analem ; Nii, Odai S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-a15b8056b1d5d20f16a16fb55ae4071d3d8b6ded1f5594ee504855d1aa7a14a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Agricultural land</topic><topic>Aquifers</topic><topic>Base flow</topic><topic>Catchment area</topic><topic>Cellular automata</topic><topic>Dam construction</topic><topic>Developing countries</topic><topic>Development Economics</topic><topic>Dry season</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Gardening</topic><topic>Hydrogeology</topic><topic>Hydrology</topic><topic>Hydrology/Water Resources</topic><topic>Land cover</topic><topic>Land use</topic><topic>LDCs</topic><topic>Livestock</topic><topic>Markov chains</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Moisture content</topic><topic>Original Article</topic><topic>Reservoir construction</topic><topic>Reservoir storage</topic><topic>Restoration</topic><topic>Runoff</topic><topic>Sediment yield</topic><topic>Soil water</topic><topic>Surface runoff</topic><topic>Sustainable Development</topic><topic>Water balance</topic><topic>Water Policy/Water Governance/Water Management</topic><topic>Water resources</topic><topic>Water resources management</topic><topic>Water yield</topic><topic>Watersheds</topic><toplevel>online_resources</toplevel><creatorcontrib>Atullley, Joan A.</creatorcontrib><creatorcontrib>Kwaku, Adjei A.</creatorcontrib><creatorcontrib>Owusu-Ansah, Emanuel D. J.</creatorcontrib><creatorcontrib>Ampofo, Steve</creatorcontrib><creatorcontrib>Jacob, Analem</creatorcontrib><creatorcontrib>Nii, Odai S.</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><jtitle>Sustainable water resources management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Atullley, Joan A.</au><au>Kwaku, Adjei A.</au><au>Owusu-Ansah, Emanuel D. J.</au><au>Ampofo, Steve</au><au>Jacob, Analem</au><au>Nii, Odai S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling the impact of land cover changes on water balance in the Vea catchment of Ghana, 1985–2040</atitle><jtitle>Sustainable water resources management</jtitle><stitle>Sustain. Water Resour. Manag</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>8</volume><issue>5</issue><artnum>148</artnum><issn>2363-5037</issn><eissn>2363-5045</eissn><abstract>The ensuing effect of global land use changes on watershed hydrology is enormous, particularly in rapidly developing countries such as Ghana. Understanding how watershed land use dynamics influence hydrology is essential to devising effective land and water resources management strategies. This study evaluated the impact of land-use changes on hydrological components in the Vea catchment of Ghana from 1986 to 2040 using the Cellular Automata (CA)-Markov chain model for land change modeling and Soil Water Assessment Tool (SWAT) for hydrological modeling. The models performed satisfactorily with NSE values of 0.74 and 0.78 for calibration and validation, respectively, in SWAT and an overall Kappa value of 0.89 in CA-Markov. The land cover change analysis revealed a continuous increase in farmland and built-up areas alongside decreasing savanah forest which resulted in increased Curved Numbers (CN) from 81 in 1986 to 86 in 2040. Consequently, ET and baseflow decreased by − 7.8% and − 26.2%, respectively, while surface runoff, and water yield increased by 46.9%, and 5.1%, respectively. Despite the general decline in baseflow, the seasonal trend showed an extention to January, indicating adequate storage of water in the shallow aquifer that can be extracted for dry season gardening. While vegetation restoration is critical to reducing eroded sediment yield to guarantee reservoir storage, constructing dams and dugouts to harness the high surface runoff for irrigation and livestock watering in the long dry season is also needful.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40899-022-00727-9</doi><orcidid>https://orcid.org/0000-0001-7334-3221</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2363-5037
ispartof Sustainable water resources management, 2022-10, Vol.8 (5), Article 148
issn 2363-5037
2363-5045
language eng
recordid cdi_proquest_journals_2705978743
source SpringerNature Journals
subjects Agricultural land
Aquifers
Base flow
Catchment area
Cellular automata
Dam construction
Developing countries
Development Economics
Dry season
Earth and Environmental Science
Earth Sciences
Gardening
Hydrogeology
Hydrology
Hydrology/Water Resources
Land cover
Land use
LDCs
Livestock
Markov chains
Mathematical models
Modelling
Moisture content
Original Article
Reservoir construction
Reservoir storage
Restoration
Runoff
Sediment yield
Soil water
Surface runoff
Sustainable Development
Water balance
Water Policy/Water Governance/Water Management
Water resources
Water resources management
Water yield
Watersheds
title Modeling the impact of land cover changes on water balance in the Vea catchment of Ghana, 1985–2040
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A45%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20the%20impact%20of%20land%20cover%20changes%20on%20water%20balance%20in%20the%20Vea%20catchment%20of%20Ghana,%201985%E2%80%932040&rft.jtitle=Sustainable%20water%20resources%20management&rft.au=Atullley,%20Joan%20A.&rft.date=2022-10-01&rft.volume=8&rft.issue=5&rft.artnum=148&rft.issn=2363-5037&rft.eissn=2363-5045&rft_id=info:doi/10.1007/s40899-022-00727-9&rft_dat=%3Cproquest_cross%3E2705978743%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2705978743&rft_id=info:pmid/&rfr_iscdi=true