Modeling the impact of land cover changes on water balance in the Vea catchment of Ghana, 1985–2040
The ensuing effect of global land use changes on watershed hydrology is enormous, particularly in rapidly developing countries such as Ghana. Understanding how watershed land use dynamics influence hydrology is essential to devising effective land and water resources management strategies. This stud...
Gespeichert in:
Veröffentlicht in: | Sustainable water resources management 2022-10, Vol.8 (5), Article 148 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | |
container_title | Sustainable water resources management |
container_volume | 8 |
creator | Atullley, Joan A. Kwaku, Adjei A. Owusu-Ansah, Emanuel D. J. Ampofo, Steve Jacob, Analem Nii, Odai S. |
description | The ensuing effect of global land use changes on watershed hydrology is enormous, particularly in rapidly developing countries such as Ghana. Understanding how watershed land use dynamics influence hydrology is essential to devising effective land and water resources management strategies. This study evaluated the impact of land-use changes on hydrological components in the Vea catchment of Ghana from 1986 to 2040 using the Cellular Automata (CA)-Markov chain model for land change modeling and Soil Water Assessment Tool (SWAT) for hydrological modeling. The models performed satisfactorily with NSE values of 0.74 and 0.78 for calibration and validation, respectively, in SWAT and an overall Kappa value of 0.89 in CA-Markov. The land cover change analysis revealed a continuous increase in farmland and built-up areas alongside decreasing savanah forest which resulted in increased Curved Numbers (CN) from 81 in 1986 to 86 in 2040. Consequently, ET and baseflow decreased by − 7.8% and − 26.2%, respectively, while surface runoff, and water yield increased by 46.9%, and 5.1%, respectively. Despite the general decline in baseflow, the seasonal trend showed an extention to January, indicating adequate storage of water in the shallow aquifer that can be extracted for dry season gardening. While vegetation restoration is critical to reducing eroded sediment yield to guarantee reservoir storage, constructing dams and dugouts to harness the high surface runoff for irrigation and livestock watering in the long dry season is also needful. |
doi_str_mv | 10.1007/s40899-022-00727-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2705978743</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2705978743</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-a15b8056b1d5d20f16a16fb55ae4071d3d8b6ded1f5594ee504855d1aa7a14a73</originalsourceid><addsrcrecordid>eNp9kM9OAyEQh4nRxKb2BTyReHV1gGVZjqbR1qTGi3ols8D2T9rdCluNN9_BN_RJxK7Rmydg-H0zmY-QUwYXDEBdxhxKrTPgPEtPrjJ9QAZcFCKTkMvD37tQx2QU4woAmCwLrfSA-LvW-fWymdNu4elys0Xb0bama2wcte2LD9QusJn7SNuGvmKXChWmX5vSzR568kgtdnax8c2enSQAzynTpfx8_-CQwwk5qnEd_ejnHJLHm-uH8TSb3U9ux1ezzAqmuwyZrEqQRcWcdBxqViAr6kpK9Dko5oQrq8J5x2opde59Wq-U0jFEhSxHJYbkrO-7De3zzsfOrNpdaNJIwxVIrUqVi5TifcqGNsbga7MNyw2GN8PAfBs1vVGTjJq9UaMTJHoopnDyEf5a_0N9AUKed3U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2705978743</pqid></control><display><type>article</type><title>Modeling the impact of land cover changes on water balance in the Vea catchment of Ghana, 1985–2040</title><source>SpringerNature Journals</source><creator>Atullley, Joan A. ; Kwaku, Adjei A. ; Owusu-Ansah, Emanuel D. J. ; Ampofo, Steve ; Jacob, Analem ; Nii, Odai S.</creator><creatorcontrib>Atullley, Joan A. ; Kwaku, Adjei A. ; Owusu-Ansah, Emanuel D. J. ; Ampofo, Steve ; Jacob, Analem ; Nii, Odai S.</creatorcontrib><description>The ensuing effect of global land use changes on watershed hydrology is enormous, particularly in rapidly developing countries such as Ghana. Understanding how watershed land use dynamics influence hydrology is essential to devising effective land and water resources management strategies. This study evaluated the impact of land-use changes on hydrological components in the Vea catchment of Ghana from 1986 to 2040 using the Cellular Automata (CA)-Markov chain model for land change modeling and Soil Water Assessment Tool (SWAT) for hydrological modeling. The models performed satisfactorily with NSE values of 0.74 and 0.78 for calibration and validation, respectively, in SWAT and an overall Kappa value of 0.89 in CA-Markov. The land cover change analysis revealed a continuous increase in farmland and built-up areas alongside decreasing savanah forest which resulted in increased Curved Numbers (CN) from 81 in 1986 to 86 in 2040. Consequently, ET and baseflow decreased by − 7.8% and − 26.2%, respectively, while surface runoff, and water yield increased by 46.9%, and 5.1%, respectively. Despite the general decline in baseflow, the seasonal trend showed an extention to January, indicating adequate storage of water in the shallow aquifer that can be extracted for dry season gardening. While vegetation restoration is critical to reducing eroded sediment yield to guarantee reservoir storage, constructing dams and dugouts to harness the high surface runoff for irrigation and livestock watering in the long dry season is also needful.</description><identifier>ISSN: 2363-5037</identifier><identifier>EISSN: 2363-5045</identifier><identifier>DOI: 10.1007/s40899-022-00727-9</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Agricultural land ; Aquifers ; Base flow ; Catchment area ; Cellular automata ; Dam construction ; Developing countries ; Development Economics ; Dry season ; Earth and Environmental Science ; Earth Sciences ; Gardening ; Hydrogeology ; Hydrology ; Hydrology/Water Resources ; Land cover ; Land use ; LDCs ; Livestock ; Markov chains ; Mathematical models ; Modelling ; Moisture content ; Original Article ; Reservoir construction ; Reservoir storage ; Restoration ; Runoff ; Sediment yield ; Soil water ; Surface runoff ; Sustainable Development ; Water balance ; Water Policy/Water Governance/Water Management ; Water resources ; Water resources management ; Water yield ; Watersheds</subject><ispartof>Sustainable water resources management, 2022-10, Vol.8 (5), Article 148</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-a15b8056b1d5d20f16a16fb55ae4071d3d8b6ded1f5594ee504855d1aa7a14a73</citedby><cites>FETCH-LOGICAL-c319t-a15b8056b1d5d20f16a16fb55ae4071d3d8b6ded1f5594ee504855d1aa7a14a73</cites><orcidid>0000-0001-7334-3221</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40899-022-00727-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40899-022-00727-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Atullley, Joan A.</creatorcontrib><creatorcontrib>Kwaku, Adjei A.</creatorcontrib><creatorcontrib>Owusu-Ansah, Emanuel D. J.</creatorcontrib><creatorcontrib>Ampofo, Steve</creatorcontrib><creatorcontrib>Jacob, Analem</creatorcontrib><creatorcontrib>Nii, Odai S.</creatorcontrib><title>Modeling the impact of land cover changes on water balance in the Vea catchment of Ghana, 1985–2040</title><title>Sustainable water resources management</title><addtitle>Sustain. Water Resour. Manag</addtitle><description>The ensuing effect of global land use changes on watershed hydrology is enormous, particularly in rapidly developing countries such as Ghana. Understanding how watershed land use dynamics influence hydrology is essential to devising effective land and water resources management strategies. This study evaluated the impact of land-use changes on hydrological components in the Vea catchment of Ghana from 1986 to 2040 using the Cellular Automata (CA)-Markov chain model for land change modeling and Soil Water Assessment Tool (SWAT) for hydrological modeling. The models performed satisfactorily with NSE values of 0.74 and 0.78 for calibration and validation, respectively, in SWAT and an overall Kappa value of 0.89 in CA-Markov. The land cover change analysis revealed a continuous increase in farmland and built-up areas alongside decreasing savanah forest which resulted in increased Curved Numbers (CN) from 81 in 1986 to 86 in 2040. Consequently, ET and baseflow decreased by − 7.8% and − 26.2%, respectively, while surface runoff, and water yield increased by 46.9%, and 5.1%, respectively. Despite the general decline in baseflow, the seasonal trend showed an extention to January, indicating adequate storage of water in the shallow aquifer that can be extracted for dry season gardening. While vegetation restoration is critical to reducing eroded sediment yield to guarantee reservoir storage, constructing dams and dugouts to harness the high surface runoff for irrigation and livestock watering in the long dry season is also needful.</description><subject>Agricultural land</subject><subject>Aquifers</subject><subject>Base flow</subject><subject>Catchment area</subject><subject>Cellular automata</subject><subject>Dam construction</subject><subject>Developing countries</subject><subject>Development Economics</subject><subject>Dry season</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Gardening</subject><subject>Hydrogeology</subject><subject>Hydrology</subject><subject>Hydrology/Water Resources</subject><subject>Land cover</subject><subject>Land use</subject><subject>LDCs</subject><subject>Livestock</subject><subject>Markov chains</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Moisture content</subject><subject>Original Article</subject><subject>Reservoir construction</subject><subject>Reservoir storage</subject><subject>Restoration</subject><subject>Runoff</subject><subject>Sediment yield</subject><subject>Soil water</subject><subject>Surface runoff</subject><subject>Sustainable Development</subject><subject>Water balance</subject><subject>Water Policy/Water Governance/Water Management</subject><subject>Water resources</subject><subject>Water resources management</subject><subject>Water yield</subject><subject>Watersheds</subject><issn>2363-5037</issn><issn>2363-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kM9OAyEQh4nRxKb2BTyReHV1gGVZjqbR1qTGi3ols8D2T9rdCluNN9_BN_RJxK7Rmydg-H0zmY-QUwYXDEBdxhxKrTPgPEtPrjJ9QAZcFCKTkMvD37tQx2QU4woAmCwLrfSA-LvW-fWymdNu4elys0Xb0bama2wcte2LD9QusJn7SNuGvmKXChWmX5vSzR568kgtdnax8c2enSQAzynTpfx8_-CQwwk5qnEd_ejnHJLHm-uH8TSb3U9ux1ezzAqmuwyZrEqQRcWcdBxqViAr6kpK9Dko5oQrq8J5x2opde59Wq-U0jFEhSxHJYbkrO-7De3zzsfOrNpdaNJIwxVIrUqVi5TifcqGNsbga7MNyw2GN8PAfBs1vVGTjJq9UaMTJHoopnDyEf5a_0N9AUKed3U</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Atullley, Joan A.</creator><creator>Kwaku, Adjei A.</creator><creator>Owusu-Ansah, Emanuel D. J.</creator><creator>Ampofo, Steve</creator><creator>Jacob, Analem</creator><creator>Nii, Odai S.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>H97</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><orcidid>https://orcid.org/0000-0001-7334-3221</orcidid></search><sort><creationdate>20221001</creationdate><title>Modeling the impact of land cover changes on water balance in the Vea catchment of Ghana, 1985–2040</title><author>Atullley, Joan A. ; Kwaku, Adjei A. ; Owusu-Ansah, Emanuel D. J. ; Ampofo, Steve ; Jacob, Analem ; Nii, Odai S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-a15b8056b1d5d20f16a16fb55ae4071d3d8b6ded1f5594ee504855d1aa7a14a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Agricultural land</topic><topic>Aquifers</topic><topic>Base flow</topic><topic>Catchment area</topic><topic>Cellular automata</topic><topic>Dam construction</topic><topic>Developing countries</topic><topic>Development Economics</topic><topic>Dry season</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Gardening</topic><topic>Hydrogeology</topic><topic>Hydrology</topic><topic>Hydrology/Water Resources</topic><topic>Land cover</topic><topic>Land use</topic><topic>LDCs</topic><topic>Livestock</topic><topic>Markov chains</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Moisture content</topic><topic>Original Article</topic><topic>Reservoir construction</topic><topic>Reservoir storage</topic><topic>Restoration</topic><topic>Runoff</topic><topic>Sediment yield</topic><topic>Soil water</topic><topic>Surface runoff</topic><topic>Sustainable Development</topic><topic>Water balance</topic><topic>Water Policy/Water Governance/Water Management</topic><topic>Water resources</topic><topic>Water resources management</topic><topic>Water yield</topic><topic>Watersheds</topic><toplevel>online_resources</toplevel><creatorcontrib>Atullley, Joan A.</creatorcontrib><creatorcontrib>Kwaku, Adjei A.</creatorcontrib><creatorcontrib>Owusu-Ansah, Emanuel D. J.</creatorcontrib><creatorcontrib>Ampofo, Steve</creatorcontrib><creatorcontrib>Jacob, Analem</creatorcontrib><creatorcontrib>Nii, Odai S.</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><jtitle>Sustainable water resources management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Atullley, Joan A.</au><au>Kwaku, Adjei A.</au><au>Owusu-Ansah, Emanuel D. J.</au><au>Ampofo, Steve</au><au>Jacob, Analem</au><au>Nii, Odai S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling the impact of land cover changes on water balance in the Vea catchment of Ghana, 1985–2040</atitle><jtitle>Sustainable water resources management</jtitle><stitle>Sustain. Water Resour. Manag</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>8</volume><issue>5</issue><artnum>148</artnum><issn>2363-5037</issn><eissn>2363-5045</eissn><abstract>The ensuing effect of global land use changes on watershed hydrology is enormous, particularly in rapidly developing countries such as Ghana. Understanding how watershed land use dynamics influence hydrology is essential to devising effective land and water resources management strategies. This study evaluated the impact of land-use changes on hydrological components in the Vea catchment of Ghana from 1986 to 2040 using the Cellular Automata (CA)-Markov chain model for land change modeling and Soil Water Assessment Tool (SWAT) for hydrological modeling. The models performed satisfactorily with NSE values of 0.74 and 0.78 for calibration and validation, respectively, in SWAT and an overall Kappa value of 0.89 in CA-Markov. The land cover change analysis revealed a continuous increase in farmland and built-up areas alongside decreasing savanah forest which resulted in increased Curved Numbers (CN) from 81 in 1986 to 86 in 2040. Consequently, ET and baseflow decreased by − 7.8% and − 26.2%, respectively, while surface runoff, and water yield increased by 46.9%, and 5.1%, respectively. Despite the general decline in baseflow, the seasonal trend showed an extention to January, indicating adequate storage of water in the shallow aquifer that can be extracted for dry season gardening. While vegetation restoration is critical to reducing eroded sediment yield to guarantee reservoir storage, constructing dams and dugouts to harness the high surface runoff for irrigation and livestock watering in the long dry season is also needful.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40899-022-00727-9</doi><orcidid>https://orcid.org/0000-0001-7334-3221</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2363-5037 |
ispartof | Sustainable water resources management, 2022-10, Vol.8 (5), Article 148 |
issn | 2363-5037 2363-5045 |
language | eng |
recordid | cdi_proquest_journals_2705978743 |
source | SpringerNature Journals |
subjects | Agricultural land Aquifers Base flow Catchment area Cellular automata Dam construction Developing countries Development Economics Dry season Earth and Environmental Science Earth Sciences Gardening Hydrogeology Hydrology Hydrology/Water Resources Land cover Land use LDCs Livestock Markov chains Mathematical models Modelling Moisture content Original Article Reservoir construction Reservoir storage Restoration Runoff Sediment yield Soil water Surface runoff Sustainable Development Water balance Water Policy/Water Governance/Water Management Water resources Water resources management Water yield Watersheds |
title | Modeling the impact of land cover changes on water balance in the Vea catchment of Ghana, 1985–2040 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A45%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20the%20impact%20of%20land%20cover%20changes%20on%20water%20balance%20in%20the%20Vea%20catchment%20of%20Ghana,%201985%E2%80%932040&rft.jtitle=Sustainable%20water%20resources%20management&rft.au=Atullley,%20Joan%20A.&rft.date=2022-10-01&rft.volume=8&rft.issue=5&rft.artnum=148&rft.issn=2363-5037&rft.eissn=2363-5045&rft_id=info:doi/10.1007/s40899-022-00727-9&rft_dat=%3Cproquest_cross%3E2705978743%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2705978743&rft_id=info:pmid/&rfr_iscdi=true |