Ultrathin Plasma Polymer Passivation of Perovskite Solar Cells for Improved Stability and Reproducibility
Despite the youthfulness of hybrid halide perovskite solar cells, their efficiencies are currently comparable to commercial silicon and have surpassed quantum‐dots solar cells. Yet, the scalability of these devices is a challenge due to their low reproducibility and stability under environmental con...
Gespeichert in:
Veröffentlicht in: | Advanced energy materials 2022-08, Vol.12 (32), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 32 |
container_start_page | |
container_title | Advanced energy materials |
container_volume | 12 |
creator | Obrero‐Perez, Jose M. Contreras‐Bernal, Lidia Nuñez‐Galvez, Fernando Castillo‐Seoane, Javier Valadez‐Villalobos, Karen Aparicio, Francisco J. Anta, Juan A. Borras, Ana Sanchez‐Valencia, Juan R. Barranco, Angel |
description | Despite the youthfulness of hybrid halide perovskite solar cells, their efficiencies are currently comparable to commercial silicon and have surpassed quantum‐dots solar cells. Yet, the scalability of these devices is a challenge due to their low reproducibility and stability under environmental conditions. However, the techniques reported to date to tackle such issues recurrently involve the use of solvent methods that would further complicate their transfer to industry. Herein a reliable alternative relaying in the implementation of an ultrathin plasma polymer as a passivation interface between the electron transport layer and the hybrid perovskite layer is presented. Such a nanoengineered interface provides solar devices with increased long‐term stability under ambient conditions. Thus, without involving any additional encapsulation step, the cells retain more than 80% of their efficiency after being exposed to the ambient atmosphere for more than 1000 h. Moreover, this plasma polymer passivation strategy significantly improves the coverage of the mesoporous scaffold by the perovskite layer, providing the solar cells with enhanced performance, with a champion efficiency of 19.2%, a remarkable value for Li‐free standard mesoporous n‐i‐p architectures, as well as significantly improved reproducibility.
In this work, the remote plasma‐assisted vacuum deposition (RPAVD) of an ultrathin plasma polymer layer to passivate the electron selective layer/perovskite interface of perovskite solar cells is reported. The results show that the plasma polymer interface passivation improves both the photovoltaic parameters and reproducibility. Moreover, the passivation method leads to devices with higher stability under ambient conditions. |
doi_str_mv | 10.1002/aenm.202200812 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2705966276</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2705966276</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3572-ae394f1c2a3618ac1b02e47f0e5d5e0a29b72e28b9cbfdcb831b77174d21e6353</originalsourceid><addsrcrecordid>eNqFUE1Lw0AQXUTBUnv1vOA5dT-SbHIsoWqharD2vGySCW7dZOtuWsm_NyVSj85lhjfvAx5Ct5TMKSHsXkHbzBlhjJCEsgs0oTENgzgJyeX55uwazbzfkWHClBLOJ0hvTedU96FbnBvlG4Vza_oGHM6V9_qoOm1bbGucg7NH_6k7wBtrlMMZGONxbR1eNfvhBxXedKrQRnc9Vm2F32CAq0OpR-wGXdXKeJj97inaPizfs6dg_fq4yhbroOSRYIECnoY1LZniMU1USQvCIBQ1gaiKgCiWFoIBS4q0LOqqLBJOCyGoCCtGIeYRn6K70XdI_zqA7-TOHlw7REomSJTGMRPxwJqPrNJZ7x3Ucu90o1wvKZGnRuWpUXludBCko-BbG-j_YcvF8uX5T_sD5zx7fQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2705966276</pqid></control><display><type>article</type><title>Ultrathin Plasma Polymer Passivation of Perovskite Solar Cells for Improved Stability and Reproducibility</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Obrero‐Perez, Jose M. ; Contreras‐Bernal, Lidia ; Nuñez‐Galvez, Fernando ; Castillo‐Seoane, Javier ; Valadez‐Villalobos, Karen ; Aparicio, Francisco J. ; Anta, Juan A. ; Borras, Ana ; Sanchez‐Valencia, Juan R. ; Barranco, Angel</creator><creatorcontrib>Obrero‐Perez, Jose M. ; Contreras‐Bernal, Lidia ; Nuñez‐Galvez, Fernando ; Castillo‐Seoane, Javier ; Valadez‐Villalobos, Karen ; Aparicio, Francisco J. ; Anta, Juan A. ; Borras, Ana ; Sanchez‐Valencia, Juan R. ; Barranco, Angel</creatorcontrib><description>Despite the youthfulness of hybrid halide perovskite solar cells, their efficiencies are currently comparable to commercial silicon and have surpassed quantum‐dots solar cells. Yet, the scalability of these devices is a challenge due to their low reproducibility and stability under environmental conditions. However, the techniques reported to date to tackle such issues recurrently involve the use of solvent methods that would further complicate their transfer to industry. Herein a reliable alternative relaying in the implementation of an ultrathin plasma polymer as a passivation interface between the electron transport layer and the hybrid perovskite layer is presented. Such a nanoengineered interface provides solar devices with increased long‐term stability under ambient conditions. Thus, without involving any additional encapsulation step, the cells retain more than 80% of their efficiency after being exposed to the ambient atmosphere for more than 1000 h. Moreover, this plasma polymer passivation strategy significantly improves the coverage of the mesoporous scaffold by the perovskite layer, providing the solar cells with enhanced performance, with a champion efficiency of 19.2%, a remarkable value for Li‐free standard mesoporous n‐i‐p architectures, as well as significantly improved reproducibility.
In this work, the remote plasma‐assisted vacuum deposition (RPAVD) of an ultrathin plasma polymer layer to passivate the electron selective layer/perovskite interface of perovskite solar cells is reported. The results show that the plasma polymer interface passivation improves both the photovoltaic parameters and reproducibility. Moreover, the passivation method leads to devices with higher stability under ambient conditions.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202200812</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Electron transport ; Interface stability ; passivation interfaces ; Passivity ; perovskite solar cells ; Perovskites ; Photovoltaic cells ; plasma and vacuum deposition ; Polymers ; Reproducibility ; Solar cells ; stability ; ultrathin polymers</subject><ispartof>Advanced energy materials, 2022-08, Vol.12 (32), p.n/a</ispartof><rights>2022 The Authors. Advanced Energy Materials published by Wiley‐VCH GmbH</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3572-ae394f1c2a3618ac1b02e47f0e5d5e0a29b72e28b9cbfdcb831b77174d21e6353</citedby><cites>FETCH-LOGICAL-c3572-ae394f1c2a3618ac1b02e47f0e5d5e0a29b72e28b9cbfdcb831b77174d21e6353</cites><orcidid>0000-0002-0261-0828 ; 0000-0003-2010-1223 ; 0000-0002-8099-7669 ; 0000-0001-8799-2054 ; 0000-0002-8002-0313 ; 0000-0003-2493-4433</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.202200812$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.202200812$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Obrero‐Perez, Jose M.</creatorcontrib><creatorcontrib>Contreras‐Bernal, Lidia</creatorcontrib><creatorcontrib>Nuñez‐Galvez, Fernando</creatorcontrib><creatorcontrib>Castillo‐Seoane, Javier</creatorcontrib><creatorcontrib>Valadez‐Villalobos, Karen</creatorcontrib><creatorcontrib>Aparicio, Francisco J.</creatorcontrib><creatorcontrib>Anta, Juan A.</creatorcontrib><creatorcontrib>Borras, Ana</creatorcontrib><creatorcontrib>Sanchez‐Valencia, Juan R.</creatorcontrib><creatorcontrib>Barranco, Angel</creatorcontrib><title>Ultrathin Plasma Polymer Passivation of Perovskite Solar Cells for Improved Stability and Reproducibility</title><title>Advanced energy materials</title><description>Despite the youthfulness of hybrid halide perovskite solar cells, their efficiencies are currently comparable to commercial silicon and have surpassed quantum‐dots solar cells. Yet, the scalability of these devices is a challenge due to their low reproducibility and stability under environmental conditions. However, the techniques reported to date to tackle such issues recurrently involve the use of solvent methods that would further complicate their transfer to industry. Herein a reliable alternative relaying in the implementation of an ultrathin plasma polymer as a passivation interface between the electron transport layer and the hybrid perovskite layer is presented. Such a nanoengineered interface provides solar devices with increased long‐term stability under ambient conditions. Thus, without involving any additional encapsulation step, the cells retain more than 80% of their efficiency after being exposed to the ambient atmosphere for more than 1000 h. Moreover, this plasma polymer passivation strategy significantly improves the coverage of the mesoporous scaffold by the perovskite layer, providing the solar cells with enhanced performance, with a champion efficiency of 19.2%, a remarkable value for Li‐free standard mesoporous n‐i‐p architectures, as well as significantly improved reproducibility.
In this work, the remote plasma‐assisted vacuum deposition (RPAVD) of an ultrathin plasma polymer layer to passivate the electron selective layer/perovskite interface of perovskite solar cells is reported. The results show that the plasma polymer interface passivation improves both the photovoltaic parameters and reproducibility. Moreover, the passivation method leads to devices with higher stability under ambient conditions.</description><subject>Electron transport</subject><subject>Interface stability</subject><subject>passivation interfaces</subject><subject>Passivity</subject><subject>perovskite solar cells</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>plasma and vacuum deposition</subject><subject>Polymers</subject><subject>Reproducibility</subject><subject>Solar cells</subject><subject>stability</subject><subject>ultrathin polymers</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFUE1Lw0AQXUTBUnv1vOA5dT-SbHIsoWqharD2vGySCW7dZOtuWsm_NyVSj85lhjfvAx5Ct5TMKSHsXkHbzBlhjJCEsgs0oTENgzgJyeX55uwazbzfkWHClBLOJ0hvTedU96FbnBvlG4Vza_oGHM6V9_qoOm1bbGucg7NH_6k7wBtrlMMZGONxbR1eNfvhBxXedKrQRnc9Vm2F32CAq0OpR-wGXdXKeJj97inaPizfs6dg_fq4yhbroOSRYIECnoY1LZniMU1USQvCIBQ1gaiKgCiWFoIBS4q0LOqqLBJOCyGoCCtGIeYRn6K70XdI_zqA7-TOHlw7REomSJTGMRPxwJqPrNJZ7x3Ucu90o1wvKZGnRuWpUXludBCko-BbG-j_YcvF8uX5T_sD5zx7fQ</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Obrero‐Perez, Jose M.</creator><creator>Contreras‐Bernal, Lidia</creator><creator>Nuñez‐Galvez, Fernando</creator><creator>Castillo‐Seoane, Javier</creator><creator>Valadez‐Villalobos, Karen</creator><creator>Aparicio, Francisco J.</creator><creator>Anta, Juan A.</creator><creator>Borras, Ana</creator><creator>Sanchez‐Valencia, Juan R.</creator><creator>Barranco, Angel</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0261-0828</orcidid><orcidid>https://orcid.org/0000-0003-2010-1223</orcidid><orcidid>https://orcid.org/0000-0002-8099-7669</orcidid><orcidid>https://orcid.org/0000-0001-8799-2054</orcidid><orcidid>https://orcid.org/0000-0002-8002-0313</orcidid><orcidid>https://orcid.org/0000-0003-2493-4433</orcidid></search><sort><creationdate>20220801</creationdate><title>Ultrathin Plasma Polymer Passivation of Perovskite Solar Cells for Improved Stability and Reproducibility</title><author>Obrero‐Perez, Jose M. ; Contreras‐Bernal, Lidia ; Nuñez‐Galvez, Fernando ; Castillo‐Seoane, Javier ; Valadez‐Villalobos, Karen ; Aparicio, Francisco J. ; Anta, Juan A. ; Borras, Ana ; Sanchez‐Valencia, Juan R. ; Barranco, Angel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3572-ae394f1c2a3618ac1b02e47f0e5d5e0a29b72e28b9cbfdcb831b77174d21e6353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Electron transport</topic><topic>Interface stability</topic><topic>passivation interfaces</topic><topic>Passivity</topic><topic>perovskite solar cells</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>plasma and vacuum deposition</topic><topic>Polymers</topic><topic>Reproducibility</topic><topic>Solar cells</topic><topic>stability</topic><topic>ultrathin polymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Obrero‐Perez, Jose M.</creatorcontrib><creatorcontrib>Contreras‐Bernal, Lidia</creatorcontrib><creatorcontrib>Nuñez‐Galvez, Fernando</creatorcontrib><creatorcontrib>Castillo‐Seoane, Javier</creatorcontrib><creatorcontrib>Valadez‐Villalobos, Karen</creatorcontrib><creatorcontrib>Aparicio, Francisco J.</creatorcontrib><creatorcontrib>Anta, Juan A.</creatorcontrib><creatorcontrib>Borras, Ana</creatorcontrib><creatorcontrib>Sanchez‐Valencia, Juan R.</creatorcontrib><creatorcontrib>Barranco, Angel</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Obrero‐Perez, Jose M.</au><au>Contreras‐Bernal, Lidia</au><au>Nuñez‐Galvez, Fernando</au><au>Castillo‐Seoane, Javier</au><au>Valadez‐Villalobos, Karen</au><au>Aparicio, Francisco J.</au><au>Anta, Juan A.</au><au>Borras, Ana</au><au>Sanchez‐Valencia, Juan R.</au><au>Barranco, Angel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrathin Plasma Polymer Passivation of Perovskite Solar Cells for Improved Stability and Reproducibility</atitle><jtitle>Advanced energy materials</jtitle><date>2022-08-01</date><risdate>2022</risdate><volume>12</volume><issue>32</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Despite the youthfulness of hybrid halide perovskite solar cells, their efficiencies are currently comparable to commercial silicon and have surpassed quantum‐dots solar cells. Yet, the scalability of these devices is a challenge due to their low reproducibility and stability under environmental conditions. However, the techniques reported to date to tackle such issues recurrently involve the use of solvent methods that would further complicate their transfer to industry. Herein a reliable alternative relaying in the implementation of an ultrathin plasma polymer as a passivation interface between the electron transport layer and the hybrid perovskite layer is presented. Such a nanoengineered interface provides solar devices with increased long‐term stability under ambient conditions. Thus, without involving any additional encapsulation step, the cells retain more than 80% of their efficiency after being exposed to the ambient atmosphere for more than 1000 h. Moreover, this plasma polymer passivation strategy significantly improves the coverage of the mesoporous scaffold by the perovskite layer, providing the solar cells with enhanced performance, with a champion efficiency of 19.2%, a remarkable value for Li‐free standard mesoporous n‐i‐p architectures, as well as significantly improved reproducibility.
In this work, the remote plasma‐assisted vacuum deposition (RPAVD) of an ultrathin plasma polymer layer to passivate the electron selective layer/perovskite interface of perovskite solar cells is reported. The results show that the plasma polymer interface passivation improves both the photovoltaic parameters and reproducibility. Moreover, the passivation method leads to devices with higher stability under ambient conditions.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202200812</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-0261-0828</orcidid><orcidid>https://orcid.org/0000-0003-2010-1223</orcidid><orcidid>https://orcid.org/0000-0002-8099-7669</orcidid><orcidid>https://orcid.org/0000-0001-8799-2054</orcidid><orcidid>https://orcid.org/0000-0002-8002-0313</orcidid><orcidid>https://orcid.org/0000-0003-2493-4433</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1614-6832 |
ispartof | Advanced energy materials, 2022-08, Vol.12 (32), p.n/a |
issn | 1614-6832 1614-6840 |
language | eng |
recordid | cdi_proquest_journals_2705966276 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Electron transport Interface stability passivation interfaces Passivity perovskite solar cells Perovskites Photovoltaic cells plasma and vacuum deposition Polymers Reproducibility Solar cells stability ultrathin polymers |
title | Ultrathin Plasma Polymer Passivation of Perovskite Solar Cells for Improved Stability and Reproducibility |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T08%3A45%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrathin%20Plasma%20Polymer%20Passivation%20of%20Perovskite%20Solar%20Cells%20for%20Improved%20Stability%20and%20Reproducibility&rft.jtitle=Advanced%20energy%20materials&rft.au=Obrero%E2%80%90Perez,%20Jose%20M.&rft.date=2022-08-01&rft.volume=12&rft.issue=32&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202200812&rft_dat=%3Cproquest_cross%3E2705966276%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2705966276&rft_id=info:pmid/&rfr_iscdi=true |