Sequentially Fluorinated Polythiophene Donors for High‐Performance Organic Solar Cells with 16.4% Efficiency

Polythiophenes (PTs) have attracted considerable interest for application in organic solar cells (OSCs) owing to their simple molecular structures and low‐cost synthesis. However, the power conversion efficiencies (PCEs) of PT‐based OSCs are lower than those of state‐of‐the‐art OSCs. Herein, the dev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2022-08, Vol.12 (32), p.n/a
Hauptverfasser: Jeong, Dahyun, Kim, Geon‐U, Lee, Dongchan, Seo, Soodeok, Lee, Seungjin, Han, Daehee, Park, Hyeonjung, Ma, Biwu, Cho, Shinuk, Kim, Bumjoon J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 32
container_start_page
container_title Advanced energy materials
container_volume 12
creator Jeong, Dahyun
Kim, Geon‐U
Lee, Dongchan
Seo, Soodeok
Lee, Seungjin
Han, Daehee
Park, Hyeonjung
Ma, Biwu
Cho, Shinuk
Kim, Bumjoon J.
description Polythiophenes (PTs) have attracted considerable interest for application in organic solar cells (OSCs) owing to their simple molecular structures and low‐cost synthesis. However, the power conversion efficiencies (PCEs) of PT‐based OSCs are lower than those of state‐of‐the‐art OSCs. Herein, the development of two sequentially fluorinated PT donors (PT‐2F and PT‐4F) is reported for realizing highly efficient OSCs. PT‐2F and PT‐4F are designed to contain two and four fluorine atoms, respectively, per repeating unit to decrease their highest occupied molecular orbital energy levels and increase the open‐circuit voltages of the OSCs. Importantly, the PT‐4F polymers exhibit high backbone rigidity and the desired temperature‐dependent aggregation behavior, affording well‐developed crystalline structures in thin films for efficient charge transport. These beneficial features promote the construction of an optimal blend morphology of PT‐4F:small‐molecule acceptor with a suitable energy offset and low energetic disorder. Thus, the PT‐4F‐based binary and ternary OSCs achieve high PCEs of 15.6% and 16.4%, respectively. A high‐performance polythiophene organic solar cell with a power conversion efficiency of 16.4% is demonstrated, which is enabled by sequentially fluorinated thiophene‐based polymers with a low‐lying highest occupied molecular orbital level, high crystalline properties, and the desired temperature‐dependent aggregation behavior. These beneficial features afford an optimal bulk heterojunction morphology with a suitable energy offset and low energetic disorder.
doi_str_mv 10.1002/aenm.202201603
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2705965458</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2705965458</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3173-6f1152702ab6fc9d9290d3863a285f00a7e78bf5e0e0fb513ea2c2050d9d9283</originalsourceid><addsrcrecordid>eNqFkM9OwkAQxhujiQS5et7EeCzO7vbvkSCICQoJ3JulnaVLll3clpDefASf0SexDQaPzmVmkt_3TebzvHsKQwrAngSa_ZABY0Aj4Fdej0Y08KMkgOvLzNmtN6iqHbQVpBQ473lmhR9HNLUSWjdkqo_WKSNqLMjS6qYulT2UaJA8W2NdRaR1ZKa25ffn1xJdu-2FyZEs3FYYlZOV1cKRMWpdkZOqS0KjYfBIJlKqXKHJmzvvRgpd4eC39731dLIez_z54uV1PJr7Oacx9yNJachiYGITyTwtUpZCwZOIC5aEEkDEGCcbGSIgyE1IOQqWMwih6NiE972Hs-3B2fa9qs529uhMezFrXcM0CoOwo4ZnKne2qhzK7ODUXrgmo5B1qWZdqtkl1VaQngUnpbH5h85Gk_e3P-0PvGt8Fg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2705965458</pqid></control><display><type>article</type><title>Sequentially Fluorinated Polythiophene Donors for High‐Performance Organic Solar Cells with 16.4% Efficiency</title><source>Wiley Online Library All Journals</source><creator>Jeong, Dahyun ; Kim, Geon‐U ; Lee, Dongchan ; Seo, Soodeok ; Lee, Seungjin ; Han, Daehee ; Park, Hyeonjung ; Ma, Biwu ; Cho, Shinuk ; Kim, Bumjoon J.</creator><creatorcontrib>Jeong, Dahyun ; Kim, Geon‐U ; Lee, Dongchan ; Seo, Soodeok ; Lee, Seungjin ; Han, Daehee ; Park, Hyeonjung ; Ma, Biwu ; Cho, Shinuk ; Kim, Bumjoon J.</creatorcontrib><description>Polythiophenes (PTs) have attracted considerable interest for application in organic solar cells (OSCs) owing to their simple molecular structures and low‐cost synthesis. However, the power conversion efficiencies (PCEs) of PT‐based OSCs are lower than those of state‐of‐the‐art OSCs. Herein, the development of two sequentially fluorinated PT donors (PT‐2F and PT‐4F) is reported for realizing highly efficient OSCs. PT‐2F and PT‐4F are designed to contain two and four fluorine atoms, respectively, per repeating unit to decrease their highest occupied molecular orbital energy levels and increase the open‐circuit voltages of the OSCs. Importantly, the PT‐4F polymers exhibit high backbone rigidity and the desired temperature‐dependent aggregation behavior, affording well‐developed crystalline structures in thin films for efficient charge transport. These beneficial features promote the construction of an optimal blend morphology of PT‐4F:small‐molecule acceptor with a suitable energy offset and low energetic disorder. Thus, the PT‐4F‐based binary and ternary OSCs achieve high PCEs of 15.6% and 16.4%, respectively. A high‐performance polythiophene organic solar cell with a power conversion efficiency of 16.4% is demonstrated, which is enabled by sequentially fluorinated thiophene‐based polymers with a low‐lying highest occupied molecular orbital level, high crystalline properties, and the desired temperature‐dependent aggregation behavior. These beneficial features afford an optimal bulk heterojunction morphology with a suitable energy offset and low energetic disorder.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202201603</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Charge transport ; Chemical synthesis ; Circuits ; Energy conversion efficiency ; Energy levels ; fluorinated polymers ; Fluorination ; Fluorine ; high power conversion efficiency ; low energetic disorder ; Molecular orbitals ; Molecular structure ; organic solar cells ; Photovoltaic cells ; Polythiophene ; polythiophenes ; Solar cells ; Temperature dependence ; Thin films</subject><ispartof>Advanced energy materials, 2022-08, Vol.12 (32), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3173-6f1152702ab6fc9d9290d3863a285f00a7e78bf5e0e0fb513ea2c2050d9d9283</citedby><cites>FETCH-LOGICAL-c3173-6f1152702ab6fc9d9290d3863a285f00a7e78bf5e0e0fb513ea2c2050d9d9283</cites><orcidid>0000-0001-7783-9689 ; 0000-0002-7404-8731 ; 0000-0002-2399-6678</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.202201603$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.202201603$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Jeong, Dahyun</creatorcontrib><creatorcontrib>Kim, Geon‐U</creatorcontrib><creatorcontrib>Lee, Dongchan</creatorcontrib><creatorcontrib>Seo, Soodeok</creatorcontrib><creatorcontrib>Lee, Seungjin</creatorcontrib><creatorcontrib>Han, Daehee</creatorcontrib><creatorcontrib>Park, Hyeonjung</creatorcontrib><creatorcontrib>Ma, Biwu</creatorcontrib><creatorcontrib>Cho, Shinuk</creatorcontrib><creatorcontrib>Kim, Bumjoon J.</creatorcontrib><title>Sequentially Fluorinated Polythiophene Donors for High‐Performance Organic Solar Cells with 16.4% Efficiency</title><title>Advanced energy materials</title><description>Polythiophenes (PTs) have attracted considerable interest for application in organic solar cells (OSCs) owing to their simple molecular structures and low‐cost synthesis. However, the power conversion efficiencies (PCEs) of PT‐based OSCs are lower than those of state‐of‐the‐art OSCs. Herein, the development of two sequentially fluorinated PT donors (PT‐2F and PT‐4F) is reported for realizing highly efficient OSCs. PT‐2F and PT‐4F are designed to contain two and four fluorine atoms, respectively, per repeating unit to decrease their highest occupied molecular orbital energy levels and increase the open‐circuit voltages of the OSCs. Importantly, the PT‐4F polymers exhibit high backbone rigidity and the desired temperature‐dependent aggregation behavior, affording well‐developed crystalline structures in thin films for efficient charge transport. These beneficial features promote the construction of an optimal blend morphology of PT‐4F:small‐molecule acceptor with a suitable energy offset and low energetic disorder. Thus, the PT‐4F‐based binary and ternary OSCs achieve high PCEs of 15.6% and 16.4%, respectively. A high‐performance polythiophene organic solar cell with a power conversion efficiency of 16.4% is demonstrated, which is enabled by sequentially fluorinated thiophene‐based polymers with a low‐lying highest occupied molecular orbital level, high crystalline properties, and the desired temperature‐dependent aggregation behavior. These beneficial features afford an optimal bulk heterojunction morphology with a suitable energy offset and low energetic disorder.</description><subject>Charge transport</subject><subject>Chemical synthesis</subject><subject>Circuits</subject><subject>Energy conversion efficiency</subject><subject>Energy levels</subject><subject>fluorinated polymers</subject><subject>Fluorination</subject><subject>Fluorine</subject><subject>high power conversion efficiency</subject><subject>low energetic disorder</subject><subject>Molecular orbitals</subject><subject>Molecular structure</subject><subject>organic solar cells</subject><subject>Photovoltaic cells</subject><subject>Polythiophene</subject><subject>polythiophenes</subject><subject>Solar cells</subject><subject>Temperature dependence</subject><subject>Thin films</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkM9OwkAQxhujiQS5et7EeCzO7vbvkSCICQoJ3JulnaVLll3clpDefASf0SexDQaPzmVmkt_3TebzvHsKQwrAngSa_ZABY0Aj4Fdej0Y08KMkgOvLzNmtN6iqHbQVpBQ473lmhR9HNLUSWjdkqo_WKSNqLMjS6qYulT2UaJA8W2NdRaR1ZKa25ffn1xJdu-2FyZEs3FYYlZOV1cKRMWpdkZOqS0KjYfBIJlKqXKHJmzvvRgpd4eC39731dLIez_z54uV1PJr7Oacx9yNJachiYGITyTwtUpZCwZOIC5aEEkDEGCcbGSIgyE1IOQqWMwih6NiE972Hs-3B2fa9qs529uhMezFrXcM0CoOwo4ZnKne2qhzK7ODUXrgmo5B1qWZdqtkl1VaQngUnpbH5h85Gk_e3P-0PvGt8Fg</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Jeong, Dahyun</creator><creator>Kim, Geon‐U</creator><creator>Lee, Dongchan</creator><creator>Seo, Soodeok</creator><creator>Lee, Seungjin</creator><creator>Han, Daehee</creator><creator>Park, Hyeonjung</creator><creator>Ma, Biwu</creator><creator>Cho, Shinuk</creator><creator>Kim, Bumjoon J.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7783-9689</orcidid><orcidid>https://orcid.org/0000-0002-7404-8731</orcidid><orcidid>https://orcid.org/0000-0002-2399-6678</orcidid></search><sort><creationdate>20220801</creationdate><title>Sequentially Fluorinated Polythiophene Donors for High‐Performance Organic Solar Cells with 16.4% Efficiency</title><author>Jeong, Dahyun ; Kim, Geon‐U ; Lee, Dongchan ; Seo, Soodeok ; Lee, Seungjin ; Han, Daehee ; Park, Hyeonjung ; Ma, Biwu ; Cho, Shinuk ; Kim, Bumjoon J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3173-6f1152702ab6fc9d9290d3863a285f00a7e78bf5e0e0fb513ea2c2050d9d9283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Charge transport</topic><topic>Chemical synthesis</topic><topic>Circuits</topic><topic>Energy conversion efficiency</topic><topic>Energy levels</topic><topic>fluorinated polymers</topic><topic>Fluorination</topic><topic>Fluorine</topic><topic>high power conversion efficiency</topic><topic>low energetic disorder</topic><topic>Molecular orbitals</topic><topic>Molecular structure</topic><topic>organic solar cells</topic><topic>Photovoltaic cells</topic><topic>Polythiophene</topic><topic>polythiophenes</topic><topic>Solar cells</topic><topic>Temperature dependence</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jeong, Dahyun</creatorcontrib><creatorcontrib>Kim, Geon‐U</creatorcontrib><creatorcontrib>Lee, Dongchan</creatorcontrib><creatorcontrib>Seo, Soodeok</creatorcontrib><creatorcontrib>Lee, Seungjin</creatorcontrib><creatorcontrib>Han, Daehee</creatorcontrib><creatorcontrib>Park, Hyeonjung</creatorcontrib><creatorcontrib>Ma, Biwu</creatorcontrib><creatorcontrib>Cho, Shinuk</creatorcontrib><creatorcontrib>Kim, Bumjoon J.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jeong, Dahyun</au><au>Kim, Geon‐U</au><au>Lee, Dongchan</au><au>Seo, Soodeok</au><au>Lee, Seungjin</au><au>Han, Daehee</au><au>Park, Hyeonjung</au><au>Ma, Biwu</au><au>Cho, Shinuk</au><au>Kim, Bumjoon J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sequentially Fluorinated Polythiophene Donors for High‐Performance Organic Solar Cells with 16.4% Efficiency</atitle><jtitle>Advanced energy materials</jtitle><date>2022-08-01</date><risdate>2022</risdate><volume>12</volume><issue>32</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Polythiophenes (PTs) have attracted considerable interest for application in organic solar cells (OSCs) owing to their simple molecular structures and low‐cost synthesis. However, the power conversion efficiencies (PCEs) of PT‐based OSCs are lower than those of state‐of‐the‐art OSCs. Herein, the development of two sequentially fluorinated PT donors (PT‐2F and PT‐4F) is reported for realizing highly efficient OSCs. PT‐2F and PT‐4F are designed to contain two and four fluorine atoms, respectively, per repeating unit to decrease their highest occupied molecular orbital energy levels and increase the open‐circuit voltages of the OSCs. Importantly, the PT‐4F polymers exhibit high backbone rigidity and the desired temperature‐dependent aggregation behavior, affording well‐developed crystalline structures in thin films for efficient charge transport. These beneficial features promote the construction of an optimal blend morphology of PT‐4F:small‐molecule acceptor with a suitable energy offset and low energetic disorder. Thus, the PT‐4F‐based binary and ternary OSCs achieve high PCEs of 15.6% and 16.4%, respectively. A high‐performance polythiophene organic solar cell with a power conversion efficiency of 16.4% is demonstrated, which is enabled by sequentially fluorinated thiophene‐based polymers with a low‐lying highest occupied molecular orbital level, high crystalline properties, and the desired temperature‐dependent aggregation behavior. These beneficial features afford an optimal bulk heterojunction morphology with a suitable energy offset and low energetic disorder.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202201603</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7783-9689</orcidid><orcidid>https://orcid.org/0000-0002-7404-8731</orcidid><orcidid>https://orcid.org/0000-0002-2399-6678</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2022-08, Vol.12 (32), p.n/a
issn 1614-6832
1614-6840
language eng
recordid cdi_proquest_journals_2705965458
source Wiley Online Library All Journals
subjects Charge transport
Chemical synthesis
Circuits
Energy conversion efficiency
Energy levels
fluorinated polymers
Fluorination
Fluorine
high power conversion efficiency
low energetic disorder
Molecular orbitals
Molecular structure
organic solar cells
Photovoltaic cells
Polythiophene
polythiophenes
Solar cells
Temperature dependence
Thin films
title Sequentially Fluorinated Polythiophene Donors for High‐Performance Organic Solar Cells with 16.4% Efficiency
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T00%3A31%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sequentially%20Fluorinated%20Polythiophene%20Donors%20for%20High%E2%80%90Performance%20Organic%20Solar%20Cells%20with%2016.4%25%20Efficiency&rft.jtitle=Advanced%20energy%20materials&rft.au=Jeong,%20Dahyun&rft.date=2022-08-01&rft.volume=12&rft.issue=32&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202201603&rft_dat=%3Cproquest_cross%3E2705965458%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2705965458&rft_id=info:pmid/&rfr_iscdi=true