ZIF‐Mg(OH)2 Dual Template Assisted Self‐Confinement of Small PtCo NPs as Promising Oxygen Reduction Reaction in PEM Fuel Cell

Traditional calcination usually causes sintering of Pt, which diminishes Pt exposure in proton exchange membrane fuel cell (PEMFC) electrodes. In the present work, a facile self‐confined method for synthesizing highly dispersed PtCo‐alloy on Co, N co‐doped mesoporous carbon (PCN‐MC) is developed via...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2022-08, Vol.12 (32), p.n/a
Hauptverfasser: Chen, Zhenyu, Hao, Chao, Yan, Bowen, Chen, Qiuyan, Feng, Huiyan, Mao, Xiaoqing, Cen, Jianmei, Tian, Zhi Qun, Tsiakaras, Panagiotis, Shen, Pei Kang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 32
container_start_page
container_title Advanced energy materials
container_volume 12
creator Chen, Zhenyu
Hao, Chao
Yan, Bowen
Chen, Qiuyan
Feng, Huiyan
Mao, Xiaoqing
Cen, Jianmei
Tian, Zhi Qun
Tsiakaras, Panagiotis
Shen, Pei Kang
description Traditional calcination usually causes sintering of Pt, which diminishes Pt exposure in proton exchange membrane fuel cell (PEMFC) electrodes. In the present work, a facile self‐confined method for synthesizing highly dispersed PtCo‐alloy on Co, N co‐doped mesoporous carbon (PCN‐MC) is developed via a dual‐template strategy. Owing to the co‐confined effect of Zn in the bimetallic zeolite‐based imidazolate framework (ZIF) and Mg(OH)2 template, ultra‐fine 2.7 nm PtCo‐alloy with 2–3 atomic‐layer Pt‐skin nanoparticles are obtained. By adjusting the Co/Zn feeding‐ratio in the bimetallic ZIF at 8/7, the alloying degree and nanoparticle size are optimized to achieve an outstanding oxygen reduction reaction activity with a high mass activity (MA) of 0.956 A mgPt−1 in 0.1 m HClO4, about 7.5‐fold of that of commercial Pt/C. Furthermore, notable durability is also achieved with 81% retention of the initial MA after 30k cycles conducted between 0.6–1.0 V (versus reversible hydrogen electrode). These features are also verified by a H2–Air fuel cell test with an excellent combination of mass activity, power density, and durability. This strategy provides a feasible route for the large‐scale synthesis of highly‐dispersed PtCo‐alloy catalysts. A self‐confined strategy to synthesize highly dispersed PtCo/meso‐Co‐N‐C is employed. The co‐confinement of Mg(OH)2 and Zn in a zeolite‐based imidazolate framework effectively restrains PtCo growth. The Co/Zn ratios are optimized to achieve maximum oxygen reduction reaction (ORR) performance. The PtCo/CoNC exhibits outstanding ORR activity and durability when applied in a proton exchange membrane fuel cell.
doi_str_mv 10.1002/aenm.202201600
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2705964807</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2705964807</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3170-f2cc060d8300c693e52a442db398f0395fe3715b3b7e23938d5a92f2d98917b73</originalsourceid><addsrcrecordid>eNqFkLtOw0AQRS0EElFIS70SDRQJs7t-bRmZhETKSyQ0NNbGno0cre3gtQXp4A_4Rr4EW0ahZJq5xbkz0rGsawoDCsDuJWbpgAFjQF2AM6tDXWr3Xd-G81Pm7NLqGbOHemxBgfOO9fkyHX9_fM13t8vJHSMPldRkg-lByxLJ0JjElBiTNWpVU0GeqSTDFLOS5IqsU6k1WZVBThYrQ6QhqyJPE5NkO7J8P-4wI08YV1GZ5E2SbUgyshrNybhCTQLU-sq6UFIb7P3urvU8Hm2CSX-2fJwGw1k_4tSDvmJRBC7EPgeIXMHRYdK2WbzlwlfAhaOQe9TZ8q2HjAvux44UTLFY-IJ6W493rZv27qHIXys0ZbjPqyKrX4bMA0e4tg8NNWipqMiNKVCFhyJJZXEMKYSN6bAxHZ5M1wXRFt4Sjcd_6HA4Wsz_uj82U4GG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2705964807</pqid></control><display><type>article</type><title>ZIF‐Mg(OH)2 Dual Template Assisted Self‐Confinement of Small PtCo NPs as Promising Oxygen Reduction Reaction in PEM Fuel Cell</title><source>Wiley-Blackwell Journals</source><creator>Chen, Zhenyu ; Hao, Chao ; Yan, Bowen ; Chen, Qiuyan ; Feng, Huiyan ; Mao, Xiaoqing ; Cen, Jianmei ; Tian, Zhi Qun ; Tsiakaras, Panagiotis ; Shen, Pei Kang</creator><creatorcontrib>Chen, Zhenyu ; Hao, Chao ; Yan, Bowen ; Chen, Qiuyan ; Feng, Huiyan ; Mao, Xiaoqing ; Cen, Jianmei ; Tian, Zhi Qun ; Tsiakaras, Panagiotis ; Shen, Pei Kang</creatorcontrib><description>Traditional calcination usually causes sintering of Pt, which diminishes Pt exposure in proton exchange membrane fuel cell (PEMFC) electrodes. In the present work, a facile self‐confined method for synthesizing highly dispersed PtCo‐alloy on Co, N co‐doped mesoporous carbon (PCN‐MC) is developed via a dual‐template strategy. Owing to the co‐confined effect of Zn in the bimetallic zeolite‐based imidazolate framework (ZIF) and Mg(OH)2 template, ultra‐fine 2.7 nm PtCo‐alloy with 2–3 atomic‐layer Pt‐skin nanoparticles are obtained. By adjusting the Co/Zn feeding‐ratio in the bimetallic ZIF at 8/7, the alloying degree and nanoparticle size are optimized to achieve an outstanding oxygen reduction reaction activity with a high mass activity (MA) of 0.956 A mgPt−1 in 0.1 m HClO4, about 7.5‐fold of that of commercial Pt/C. Furthermore, notable durability is also achieved with 81% retention of the initial MA after 30k cycles conducted between 0.6–1.0 V (versus reversible hydrogen electrode). These features are also verified by a H2–Air fuel cell test with an excellent combination of mass activity, power density, and durability. This strategy provides a feasible route for the large‐scale synthesis of highly‐dispersed PtCo‐alloy catalysts. A self‐confined strategy to synthesize highly dispersed PtCo/meso‐Co‐N‐C is employed. The co‐confinement of Mg(OH)2 and Zn in a zeolite‐based imidazolate framework effectively restrains PtCo growth. The Co/Zn ratios are optimized to achieve maximum oxygen reduction reaction (ORR) performance. The PtCo/CoNC exhibits outstanding ORR activity and durability when applied in a proton exchange membrane fuel cell.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202201600</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>bimetallic ZIFs ; Bimetals ; Chemical reduction ; Chemical synthesis ; Dispersion ; dual template ; Durability ; Electrodes ; Fuel cells ; Intermetallic compounds ; Nanoparticles ; oxygen reduction reaction ; Oxygen reduction reactions ; Platinum ; Proton exchange membrane fuel cells ; PtCo nanoparticles ; self‐confinement ; Zinc</subject><ispartof>Advanced energy materials, 2022-08, Vol.12 (32), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3170-f2cc060d8300c693e52a442db398f0395fe3715b3b7e23938d5a92f2d98917b73</citedby><cites>FETCH-LOGICAL-c3170-f2cc060d8300c693e52a442db398f0395fe3715b3b7e23938d5a92f2d98917b73</cites><orcidid>0000-0002-7758-1216</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.202201600$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.202201600$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Chen, Zhenyu</creatorcontrib><creatorcontrib>Hao, Chao</creatorcontrib><creatorcontrib>Yan, Bowen</creatorcontrib><creatorcontrib>Chen, Qiuyan</creatorcontrib><creatorcontrib>Feng, Huiyan</creatorcontrib><creatorcontrib>Mao, Xiaoqing</creatorcontrib><creatorcontrib>Cen, Jianmei</creatorcontrib><creatorcontrib>Tian, Zhi Qun</creatorcontrib><creatorcontrib>Tsiakaras, Panagiotis</creatorcontrib><creatorcontrib>Shen, Pei Kang</creatorcontrib><title>ZIF‐Mg(OH)2 Dual Template Assisted Self‐Confinement of Small PtCo NPs as Promising Oxygen Reduction Reaction in PEM Fuel Cell</title><title>Advanced energy materials</title><description>Traditional calcination usually causes sintering of Pt, which diminishes Pt exposure in proton exchange membrane fuel cell (PEMFC) electrodes. In the present work, a facile self‐confined method for synthesizing highly dispersed PtCo‐alloy on Co, N co‐doped mesoporous carbon (PCN‐MC) is developed via a dual‐template strategy. Owing to the co‐confined effect of Zn in the bimetallic zeolite‐based imidazolate framework (ZIF) and Mg(OH)2 template, ultra‐fine 2.7 nm PtCo‐alloy with 2–3 atomic‐layer Pt‐skin nanoparticles are obtained. By adjusting the Co/Zn feeding‐ratio in the bimetallic ZIF at 8/7, the alloying degree and nanoparticle size are optimized to achieve an outstanding oxygen reduction reaction activity with a high mass activity (MA) of 0.956 A mgPt−1 in 0.1 m HClO4, about 7.5‐fold of that of commercial Pt/C. Furthermore, notable durability is also achieved with 81% retention of the initial MA after 30k cycles conducted between 0.6–1.0 V (versus reversible hydrogen electrode). These features are also verified by a H2–Air fuel cell test with an excellent combination of mass activity, power density, and durability. This strategy provides a feasible route for the large‐scale synthesis of highly‐dispersed PtCo‐alloy catalysts. A self‐confined strategy to synthesize highly dispersed PtCo/meso‐Co‐N‐C is employed. The co‐confinement of Mg(OH)2 and Zn in a zeolite‐based imidazolate framework effectively restrains PtCo growth. The Co/Zn ratios are optimized to achieve maximum oxygen reduction reaction (ORR) performance. The PtCo/CoNC exhibits outstanding ORR activity and durability when applied in a proton exchange membrane fuel cell.</description><subject>bimetallic ZIFs</subject><subject>Bimetals</subject><subject>Chemical reduction</subject><subject>Chemical synthesis</subject><subject>Dispersion</subject><subject>dual template</subject><subject>Durability</subject><subject>Electrodes</subject><subject>Fuel cells</subject><subject>Intermetallic compounds</subject><subject>Nanoparticles</subject><subject>oxygen reduction reaction</subject><subject>Oxygen reduction reactions</subject><subject>Platinum</subject><subject>Proton exchange membrane fuel cells</subject><subject>PtCo nanoparticles</subject><subject>self‐confinement</subject><subject>Zinc</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkLtOw0AQRS0EElFIS70SDRQJs7t-bRmZhETKSyQ0NNbGno0cre3gtQXp4A_4Rr4EW0ahZJq5xbkz0rGsawoDCsDuJWbpgAFjQF2AM6tDXWr3Xd-G81Pm7NLqGbOHemxBgfOO9fkyHX9_fM13t8vJHSMPldRkg-lByxLJ0JjElBiTNWpVU0GeqSTDFLOS5IqsU6k1WZVBThYrQ6QhqyJPE5NkO7J8P-4wI08YV1GZ5E2SbUgyshrNybhCTQLU-sq6UFIb7P3urvU8Hm2CSX-2fJwGw1k_4tSDvmJRBC7EPgeIXMHRYdK2WbzlwlfAhaOQe9TZ8q2HjAvux44UTLFY-IJ6W493rZv27qHIXys0ZbjPqyKrX4bMA0e4tg8NNWipqMiNKVCFhyJJZXEMKYSN6bAxHZ5M1wXRFt4Sjcd_6HA4Wsz_uj82U4GG</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Chen, Zhenyu</creator><creator>Hao, Chao</creator><creator>Yan, Bowen</creator><creator>Chen, Qiuyan</creator><creator>Feng, Huiyan</creator><creator>Mao, Xiaoqing</creator><creator>Cen, Jianmei</creator><creator>Tian, Zhi Qun</creator><creator>Tsiakaras, Panagiotis</creator><creator>Shen, Pei Kang</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7758-1216</orcidid></search><sort><creationdate>20220801</creationdate><title>ZIF‐Mg(OH)2 Dual Template Assisted Self‐Confinement of Small PtCo NPs as Promising Oxygen Reduction Reaction in PEM Fuel Cell</title><author>Chen, Zhenyu ; Hao, Chao ; Yan, Bowen ; Chen, Qiuyan ; Feng, Huiyan ; Mao, Xiaoqing ; Cen, Jianmei ; Tian, Zhi Qun ; Tsiakaras, Panagiotis ; Shen, Pei Kang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3170-f2cc060d8300c693e52a442db398f0395fe3715b3b7e23938d5a92f2d98917b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>bimetallic ZIFs</topic><topic>Bimetals</topic><topic>Chemical reduction</topic><topic>Chemical synthesis</topic><topic>Dispersion</topic><topic>dual template</topic><topic>Durability</topic><topic>Electrodes</topic><topic>Fuel cells</topic><topic>Intermetallic compounds</topic><topic>Nanoparticles</topic><topic>oxygen reduction reaction</topic><topic>Oxygen reduction reactions</topic><topic>Platinum</topic><topic>Proton exchange membrane fuel cells</topic><topic>PtCo nanoparticles</topic><topic>self‐confinement</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Zhenyu</creatorcontrib><creatorcontrib>Hao, Chao</creatorcontrib><creatorcontrib>Yan, Bowen</creatorcontrib><creatorcontrib>Chen, Qiuyan</creatorcontrib><creatorcontrib>Feng, Huiyan</creatorcontrib><creatorcontrib>Mao, Xiaoqing</creatorcontrib><creatorcontrib>Cen, Jianmei</creatorcontrib><creatorcontrib>Tian, Zhi Qun</creatorcontrib><creatorcontrib>Tsiakaras, Panagiotis</creatorcontrib><creatorcontrib>Shen, Pei Kang</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Zhenyu</au><au>Hao, Chao</au><au>Yan, Bowen</au><au>Chen, Qiuyan</au><au>Feng, Huiyan</au><au>Mao, Xiaoqing</au><au>Cen, Jianmei</au><au>Tian, Zhi Qun</au><au>Tsiakaras, Panagiotis</au><au>Shen, Pei Kang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ZIF‐Mg(OH)2 Dual Template Assisted Self‐Confinement of Small PtCo NPs as Promising Oxygen Reduction Reaction in PEM Fuel Cell</atitle><jtitle>Advanced energy materials</jtitle><date>2022-08-01</date><risdate>2022</risdate><volume>12</volume><issue>32</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Traditional calcination usually causes sintering of Pt, which diminishes Pt exposure in proton exchange membrane fuel cell (PEMFC) electrodes. In the present work, a facile self‐confined method for synthesizing highly dispersed PtCo‐alloy on Co, N co‐doped mesoporous carbon (PCN‐MC) is developed via a dual‐template strategy. Owing to the co‐confined effect of Zn in the bimetallic zeolite‐based imidazolate framework (ZIF) and Mg(OH)2 template, ultra‐fine 2.7 nm PtCo‐alloy with 2–3 atomic‐layer Pt‐skin nanoparticles are obtained. By adjusting the Co/Zn feeding‐ratio in the bimetallic ZIF at 8/7, the alloying degree and nanoparticle size are optimized to achieve an outstanding oxygen reduction reaction activity with a high mass activity (MA) of 0.956 A mgPt−1 in 0.1 m HClO4, about 7.5‐fold of that of commercial Pt/C. Furthermore, notable durability is also achieved with 81% retention of the initial MA after 30k cycles conducted between 0.6–1.0 V (versus reversible hydrogen electrode). These features are also verified by a H2–Air fuel cell test with an excellent combination of mass activity, power density, and durability. This strategy provides a feasible route for the large‐scale synthesis of highly‐dispersed PtCo‐alloy catalysts. A self‐confined strategy to synthesize highly dispersed PtCo/meso‐Co‐N‐C is employed. The co‐confinement of Mg(OH)2 and Zn in a zeolite‐based imidazolate framework effectively restrains PtCo growth. The Co/Zn ratios are optimized to achieve maximum oxygen reduction reaction (ORR) performance. The PtCo/CoNC exhibits outstanding ORR activity and durability when applied in a proton exchange membrane fuel cell.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202201600</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-7758-1216</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2022-08, Vol.12 (32), p.n/a
issn 1614-6832
1614-6840
language eng
recordid cdi_proquest_journals_2705964807
source Wiley-Blackwell Journals
subjects bimetallic ZIFs
Bimetals
Chemical reduction
Chemical synthesis
Dispersion
dual template
Durability
Electrodes
Fuel cells
Intermetallic compounds
Nanoparticles
oxygen reduction reaction
Oxygen reduction reactions
Platinum
Proton exchange membrane fuel cells
PtCo nanoparticles
self‐confinement
Zinc
title ZIF‐Mg(OH)2 Dual Template Assisted Self‐Confinement of Small PtCo NPs as Promising Oxygen Reduction Reaction in PEM Fuel Cell
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T06%3A31%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ZIF%E2%80%90Mg(OH)2%20Dual%20Template%20Assisted%20Self%E2%80%90Confinement%20of%20Small%20PtCo%20NPs%20as%20Promising%20Oxygen%20Reduction%20Reaction%20in%20PEM%20Fuel%20Cell&rft.jtitle=Advanced%20energy%20materials&rft.au=Chen,%20Zhenyu&rft.date=2022-08-01&rft.volume=12&rft.issue=32&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202201600&rft_dat=%3Cproquest_cross%3E2705964807%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2705964807&rft_id=info:pmid/&rfr_iscdi=true