Excited Electron‐Rich Bi(3–x)+ Sites: A Quantum Well‐Like Structure for Highly Promoted Selective Photocatalytic CO2 Reduction Performance

Most of the current research on the photocatalytic mechanism of semiconductors is still on the simulation and evaluation of ground‐state active sites. Insights into photogenerated electron transition paths and excited‐state active sites during photocatalysis are still insufficient. Herein, combining...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2022-08, Vol.32 (35), p.n/a
Hauptverfasser: Wang, Bin, Zhang, Wei, Liu, Gaopeng, Chen, Hailong, Weng, Yu‐Xiang, Li, Huaming, Chu, Paul K., Xia, Jiexiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 35
container_start_page
container_title Advanced functional materials
container_volume 32
creator Wang, Bin
Zhang, Wei
Liu, Gaopeng
Chen, Hailong
Weng, Yu‐Xiang
Li, Huaming
Chu, Paul K.
Xia, Jiexiang
description Most of the current research on the photocatalytic mechanism of semiconductors is still on the simulation and evaluation of ground‐state active sites. Insights into photogenerated electron transition paths and excited‐state active sites during photocatalysis are still insufficient. Herein, combining femtosecond time‐resolved transient absorption spectroscopy, in situ Fourier‐transform infrared spectroscopy, synchronous illumination X‐ray photoelectron spectroscopy, and theoretical calculation results rationally reveal that in complex bimetallic oxyhalides the ultrathin rich oxygen vacancies (ROV) PbBiO2Cl (PBOC) double unit cell (DUC) layers facilitate migration and separation of photogenerated electrons from the bulk to Bi sites near the surface oxygen vacancies (OVs), then form the excited electron‐rich Bi(3–x)+ sites like quantum well structure. The excited Bi(3–x)+ sites act as wells for photogenerated electrons leading to lower energy barrier in the rate determining step for the formation of *CO from *COOH intermediate. Without photosensitizers and sacrificial agents, ROV DUC PBOC exhibit high CO generation rate (16.02 µmol h–1 g–1) that is 18 times higher than that of bulk PBOC. In situ characterization combined with theoretical calculation provides effective insight into the photocatalytic mechanism of photoexcited semiconductor materials. In the photoexcited state, the Bi atoms near the oxygen vacancies constitute quantum‐well‐like sites and photo‐generated electrons accumulate to form Bi(3–x)+ sites, which boost separation of photo‐generated electrons and decrease the energy barrier in the rate determining step from *COOH to *CO. Thus, the rich oxygen vacancies PbBiO2Cl double unit cell layers exhibit enhanced photocatalytic CO2 to CO conversion performance.
doi_str_mv 10.1002/adfm.202202885
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2705964799</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2705964799</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2335-3fbe451bfec2276d6ff6011f42e7bf4c4f350db2a6af5241d0b74810a8ef4f6e3</originalsourceid><addsrcrecordid>eNo9kF9LAkEUxZcoyKzXngd6KUKbf7urvZlpBoamRb0ts7N3cmp3x2ZnS9_8CELf0E_SSiFcuPfA75wLx_NOCW4SjOmVSFTWpJhW02r5e16NBCRosErt727yeugdFcU7xiQMGa95695CagcJ6qUgnTX5ZrWeaDlDN_qcbVY_i4tLNK2A4hp10GMpcldm6AXStOKG-gPQ1NlSutICUsaigX6bpUs0tiYz29QpbGP1F6DxzDgjhRPp0mmJuiOKJpBUVm1yNAZbuTORSzj2DpRICzj533Xvud976g4aw9HdfbczbMwpY36DqRi4T2IFktIwSAKlAkyI4hTCWHHJFfNxElMRCOVTThIch7xFsGiB4ioAVvfO_nLn1nyWULjo3ZQ2r15GNMR-O-Bhu11R7T_qW6ewjOZWZ8IuI4KjbeXRtvJoV3nUue0_7BT7BTA7e9Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2705964799</pqid></control><display><type>article</type><title>Excited Electron‐Rich Bi(3–x)+ Sites: A Quantum Well‐Like Structure for Highly Promoted Selective Photocatalytic CO2 Reduction Performance</title><source>Access via Wiley Online Library</source><creator>Wang, Bin ; Zhang, Wei ; Liu, Gaopeng ; Chen, Hailong ; Weng, Yu‐Xiang ; Li, Huaming ; Chu, Paul K. ; Xia, Jiexiang</creator><creatorcontrib>Wang, Bin ; Zhang, Wei ; Liu, Gaopeng ; Chen, Hailong ; Weng, Yu‐Xiang ; Li, Huaming ; Chu, Paul K. ; Xia, Jiexiang</creatorcontrib><description>Most of the current research on the photocatalytic mechanism of semiconductors is still on the simulation and evaluation of ground‐state active sites. Insights into photogenerated electron transition paths and excited‐state active sites during photocatalysis are still insufficient. Herein, combining femtosecond time‐resolved transient absorption spectroscopy, in situ Fourier‐transform infrared spectroscopy, synchronous illumination X‐ray photoelectron spectroscopy, and theoretical calculation results rationally reveal that in complex bimetallic oxyhalides the ultrathin rich oxygen vacancies (ROV) PbBiO2Cl (PBOC) double unit cell (DUC) layers facilitate migration and separation of photogenerated electrons from the bulk to Bi sites near the surface oxygen vacancies (OVs), then form the excited electron‐rich Bi(3–x)+ sites like quantum well structure. The excited Bi(3–x)+ sites act as wells for photogenerated electrons leading to lower energy barrier in the rate determining step for the formation of *CO from *COOH intermediate. Without photosensitizers and sacrificial agents, ROV DUC PBOC exhibit high CO generation rate (16.02 µmol h–1 g–1) that is 18 times higher than that of bulk PBOC. In situ characterization combined with theoretical calculation provides effective insight into the photocatalytic mechanism of photoexcited semiconductor materials. In the photoexcited state, the Bi atoms near the oxygen vacancies constitute quantum‐well‐like sites and photo‐generated electrons accumulate to form Bi(3–x)+ sites, which boost separation of photo‐generated electrons and decrease the energy barrier in the rate determining step from *COOH to *CO. Thus, the rich oxygen vacancies PbBiO2Cl double unit cell layers exhibit enhanced photocatalytic CO2 to CO conversion performance.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202202885</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Bimetals ; CO 2 reduction ; Electron transitions ; Electrons ; Infrared spectroscopy ; Materials science ; Mathematical analysis ; Oxygen ; oxygen vacancies ; Oxyhalides ; PbBiO 2Cl ; Photocatalysis ; photocatalysts ; Photoelectrons ; Quantum wells ; Semiconductor materials ; Spectrum analysis ; Unit cell ; Vacancies</subject><ispartof>Advanced functional materials, 2022-08, Vol.32 (35), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-7394-1130</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202202885$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202202885$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,782,786,1419,27933,27934,45583,45584</link.rule.ids></links><search><creatorcontrib>Wang, Bin</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Liu, Gaopeng</creatorcontrib><creatorcontrib>Chen, Hailong</creatorcontrib><creatorcontrib>Weng, Yu‐Xiang</creatorcontrib><creatorcontrib>Li, Huaming</creatorcontrib><creatorcontrib>Chu, Paul K.</creatorcontrib><creatorcontrib>Xia, Jiexiang</creatorcontrib><title>Excited Electron‐Rich Bi(3–x)+ Sites: A Quantum Well‐Like Structure for Highly Promoted Selective Photocatalytic CO2 Reduction Performance</title><title>Advanced functional materials</title><description>Most of the current research on the photocatalytic mechanism of semiconductors is still on the simulation and evaluation of ground‐state active sites. Insights into photogenerated electron transition paths and excited‐state active sites during photocatalysis are still insufficient. Herein, combining femtosecond time‐resolved transient absorption spectroscopy, in situ Fourier‐transform infrared spectroscopy, synchronous illumination X‐ray photoelectron spectroscopy, and theoretical calculation results rationally reveal that in complex bimetallic oxyhalides the ultrathin rich oxygen vacancies (ROV) PbBiO2Cl (PBOC) double unit cell (DUC) layers facilitate migration and separation of photogenerated electrons from the bulk to Bi sites near the surface oxygen vacancies (OVs), then form the excited electron‐rich Bi(3–x)+ sites like quantum well structure. The excited Bi(3–x)+ sites act as wells for photogenerated electrons leading to lower energy barrier in the rate determining step for the formation of *CO from *COOH intermediate. Without photosensitizers and sacrificial agents, ROV DUC PBOC exhibit high CO generation rate (16.02 µmol h–1 g–1) that is 18 times higher than that of bulk PBOC. In situ characterization combined with theoretical calculation provides effective insight into the photocatalytic mechanism of photoexcited semiconductor materials. In the photoexcited state, the Bi atoms near the oxygen vacancies constitute quantum‐well‐like sites and photo‐generated electrons accumulate to form Bi(3–x)+ sites, which boost separation of photo‐generated electrons and decrease the energy barrier in the rate determining step from *COOH to *CO. Thus, the rich oxygen vacancies PbBiO2Cl double unit cell layers exhibit enhanced photocatalytic CO2 to CO conversion performance.</description><subject>Bimetals</subject><subject>CO 2 reduction</subject><subject>Electron transitions</subject><subject>Electrons</subject><subject>Infrared spectroscopy</subject><subject>Materials science</subject><subject>Mathematical analysis</subject><subject>Oxygen</subject><subject>oxygen vacancies</subject><subject>Oxyhalides</subject><subject>PbBiO 2Cl</subject><subject>Photocatalysis</subject><subject>photocatalysts</subject><subject>Photoelectrons</subject><subject>Quantum wells</subject><subject>Semiconductor materials</subject><subject>Spectrum analysis</subject><subject>Unit cell</subject><subject>Vacancies</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kF9LAkEUxZcoyKzXngd6KUKbf7urvZlpBoamRb0ts7N3cmp3x2ZnS9_8CELf0E_SSiFcuPfA75wLx_NOCW4SjOmVSFTWpJhW02r5e16NBCRosErt727yeugdFcU7xiQMGa95695CagcJ6qUgnTX5ZrWeaDlDN_qcbVY_i4tLNK2A4hp10GMpcldm6AXStOKG-gPQ1NlSutICUsaigX6bpUs0tiYz29QpbGP1F6DxzDgjhRPp0mmJuiOKJpBUVm1yNAZbuTORSzj2DpRICzj533Xvud976g4aw9HdfbczbMwpY36DqRi4T2IFktIwSAKlAkyI4hTCWHHJFfNxElMRCOVTThIch7xFsGiB4ioAVvfO_nLn1nyWULjo3ZQ2r15GNMR-O-Bhu11R7T_qW6ewjOZWZ8IuI4KjbeXRtvJoV3nUue0_7BT7BTA7e9Q</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Wang, Bin</creator><creator>Zhang, Wei</creator><creator>Liu, Gaopeng</creator><creator>Chen, Hailong</creator><creator>Weng, Yu‐Xiang</creator><creator>Li, Huaming</creator><creator>Chu, Paul K.</creator><creator>Xia, Jiexiang</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7394-1130</orcidid></search><sort><creationdate>20220801</creationdate><title>Excited Electron‐Rich Bi(3–x)+ Sites: A Quantum Well‐Like Structure for Highly Promoted Selective Photocatalytic CO2 Reduction Performance</title><author>Wang, Bin ; Zhang, Wei ; Liu, Gaopeng ; Chen, Hailong ; Weng, Yu‐Xiang ; Li, Huaming ; Chu, Paul K. ; Xia, Jiexiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2335-3fbe451bfec2276d6ff6011f42e7bf4c4f350db2a6af5241d0b74810a8ef4f6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bimetals</topic><topic>CO 2 reduction</topic><topic>Electron transitions</topic><topic>Electrons</topic><topic>Infrared spectroscopy</topic><topic>Materials science</topic><topic>Mathematical analysis</topic><topic>Oxygen</topic><topic>oxygen vacancies</topic><topic>Oxyhalides</topic><topic>PbBiO 2Cl</topic><topic>Photocatalysis</topic><topic>photocatalysts</topic><topic>Photoelectrons</topic><topic>Quantum wells</topic><topic>Semiconductor materials</topic><topic>Spectrum analysis</topic><topic>Unit cell</topic><topic>Vacancies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Bin</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Liu, Gaopeng</creatorcontrib><creatorcontrib>Chen, Hailong</creatorcontrib><creatorcontrib>Weng, Yu‐Xiang</creatorcontrib><creatorcontrib>Li, Huaming</creatorcontrib><creatorcontrib>Chu, Paul K.</creatorcontrib><creatorcontrib>Xia, Jiexiang</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Bin</au><au>Zhang, Wei</au><au>Liu, Gaopeng</au><au>Chen, Hailong</au><au>Weng, Yu‐Xiang</au><au>Li, Huaming</au><au>Chu, Paul K.</au><au>Xia, Jiexiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Excited Electron‐Rich Bi(3–x)+ Sites: A Quantum Well‐Like Structure for Highly Promoted Selective Photocatalytic CO2 Reduction Performance</atitle><jtitle>Advanced functional materials</jtitle><date>2022-08-01</date><risdate>2022</risdate><volume>32</volume><issue>35</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Most of the current research on the photocatalytic mechanism of semiconductors is still on the simulation and evaluation of ground‐state active sites. Insights into photogenerated electron transition paths and excited‐state active sites during photocatalysis are still insufficient. Herein, combining femtosecond time‐resolved transient absorption spectroscopy, in situ Fourier‐transform infrared spectroscopy, synchronous illumination X‐ray photoelectron spectroscopy, and theoretical calculation results rationally reveal that in complex bimetallic oxyhalides the ultrathin rich oxygen vacancies (ROV) PbBiO2Cl (PBOC) double unit cell (DUC) layers facilitate migration and separation of photogenerated electrons from the bulk to Bi sites near the surface oxygen vacancies (OVs), then form the excited electron‐rich Bi(3–x)+ sites like quantum well structure. The excited Bi(3–x)+ sites act as wells for photogenerated electrons leading to lower energy barrier in the rate determining step for the formation of *CO from *COOH intermediate. Without photosensitizers and sacrificial agents, ROV DUC PBOC exhibit high CO generation rate (16.02 µmol h–1 g–1) that is 18 times higher than that of bulk PBOC. In situ characterization combined with theoretical calculation provides effective insight into the photocatalytic mechanism of photoexcited semiconductor materials. In the photoexcited state, the Bi atoms near the oxygen vacancies constitute quantum‐well‐like sites and photo‐generated electrons accumulate to form Bi(3–x)+ sites, which boost separation of photo‐generated electrons and decrease the energy barrier in the rate determining step from *COOH to *CO. Thus, the rich oxygen vacancies PbBiO2Cl double unit cell layers exhibit enhanced photocatalytic CO2 to CO conversion performance.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202202885</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7394-1130</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2022-08, Vol.32 (35), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2705964799
source Access via Wiley Online Library
subjects Bimetals
CO 2 reduction
Electron transitions
Electrons
Infrared spectroscopy
Materials science
Mathematical analysis
Oxygen
oxygen vacancies
Oxyhalides
PbBiO 2Cl
Photocatalysis
photocatalysts
Photoelectrons
Quantum wells
Semiconductor materials
Spectrum analysis
Unit cell
Vacancies
title Excited Electron‐Rich Bi(3–x)+ Sites: A Quantum Well‐Like Structure for Highly Promoted Selective Photocatalytic CO2 Reduction Performance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T13%3A44%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Excited%20Electron%E2%80%90Rich%20Bi(3%E2%80%93x)+%20Sites:%20A%20Quantum%20Well%E2%80%90Like%20Structure%20for%20Highly%20Promoted%20Selective%20Photocatalytic%20CO2%20Reduction%20Performance&rft.jtitle=Advanced%20functional%20materials&rft.au=Wang,%20Bin&rft.date=2022-08-01&rft.volume=32&rft.issue=35&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202202885&rft_dat=%3Cproquest_wiley%3E2705964799%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2705964799&rft_id=info:pmid/&rfr_iscdi=true