Functional equation, upper bounds and analogue of Lindelöf hypothesis for the Barnes double zeta-function
The functional equations of the Riemann zeta function, the Hurwitz zeta function, and the Lerch zeta function have been well known for a long time and there are great importance when studying these zeta-functions. For example, fundamental properties of the upper bounds, the distribution of zeros, th...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-09 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Miyagawa, Takashi |
description | The functional equations of the Riemann zeta function, the Hurwitz zeta function, and the Lerch zeta function have been well known for a long time and there are great importance when studying these zeta-functions. For example, fundamental properties of the upper bounds, the distribution of zeros, the zero-free regions in the Riemann zeta function start from functional equations. In this paper, we prove a functional equations of the Barnes double zeta-function \( \zeta_2 (s, \alpha ; v, w ) = \sum_{m=0}^\infty \sum_{n=0}^\infty (\alpha+vm+wn)^{-s} \). Also, applying this functional equation and the Phragmén-Lindel\"of convexity principle, we obtain some upper bounds for \( \zeta_2(\sigma + it, \alpha ; v, w) \ (0\leq \sigma \leq 2) \) with respect to \( t \) as \( t \rightarrow \infty \). |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2705915251</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2705915251</sourcerecordid><originalsourceid>FETCH-proquest_journals_27059152513</originalsourceid><addsrcrecordid>eNqNjU0KwjAQRoMgKNo7DLi10KbGn62iuHDpvqR2YltCpmaahR7MC3gxK_QALj6-t3jwRmIqsyyNtyspJyJibpIkkeuNVCqbiuYU3K2ryWkL-Aj6h0sIbYseCgquZNCu7Kct3QMCGbjUrkT7eRuoni11FXLNYMhDj7DX3iFDSaGwCC_sdGyGwlyMjbaM0fAzsTgdr4dz3Hp6BOQubyj4PsS53CRqlyqp0uw_6wuZmkm1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2705915251</pqid></control><display><type>article</type><title>Functional equation, upper bounds and analogue of Lindelöf hypothesis for the Barnes double zeta-function</title><source>Free E- Journals</source><creator>Miyagawa, Takashi</creator><creatorcontrib>Miyagawa, Takashi</creatorcontrib><description>The functional equations of the Riemann zeta function, the Hurwitz zeta function, and the Lerch zeta function have been well known for a long time and there are great importance when studying these zeta-functions. For example, fundamental properties of the upper bounds, the distribution of zeros, the zero-free regions in the Riemann zeta function start from functional equations. In this paper, we prove a functional equations of the Barnes double zeta-function \( \zeta_2 (s, \alpha ; v, w ) = \sum_{m=0}^\infty \sum_{n=0}^\infty (\alpha+vm+wn)^{-s} \). Also, applying this functional equation and the Phragmén-Lindel\"of convexity principle, we obtain some upper bounds for \( \zeta_2(\sigma + it, \alpha ; v, w) \ (0\leq \sigma \leq 2) \) with respect to \( t \) as \( t \rightarrow \infty \).</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Convexity ; Functional equations ; Mathematical analysis ; Upper bounds</subject><ispartof>arXiv.org, 2022-09</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Miyagawa, Takashi</creatorcontrib><title>Functional equation, upper bounds and analogue of Lindelöf hypothesis for the Barnes double zeta-function</title><title>arXiv.org</title><description>The functional equations of the Riemann zeta function, the Hurwitz zeta function, and the Lerch zeta function have been well known for a long time and there are great importance when studying these zeta-functions. For example, fundamental properties of the upper bounds, the distribution of zeros, the zero-free regions in the Riemann zeta function start from functional equations. In this paper, we prove a functional equations of the Barnes double zeta-function \( \zeta_2 (s, \alpha ; v, w ) = \sum_{m=0}^\infty \sum_{n=0}^\infty (\alpha+vm+wn)^{-s} \). Also, applying this functional equation and the Phragmén-Lindel\"of convexity principle, we obtain some upper bounds for \( \zeta_2(\sigma + it, \alpha ; v, w) \ (0\leq \sigma \leq 2) \) with respect to \( t \) as \( t \rightarrow \infty \).</description><subject>Convexity</subject><subject>Functional equations</subject><subject>Mathematical analysis</subject><subject>Upper bounds</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjU0KwjAQRoMgKNo7DLi10KbGn62iuHDpvqR2YltCpmaahR7MC3gxK_QALj6-t3jwRmIqsyyNtyspJyJibpIkkeuNVCqbiuYU3K2ryWkL-Aj6h0sIbYseCgquZNCu7Kct3QMCGbjUrkT7eRuoni11FXLNYMhDj7DX3iFDSaGwCC_sdGyGwlyMjbaM0fAzsTgdr4dz3Hp6BOQubyj4PsS53CRqlyqp0uw_6wuZmkm1</recordid><startdate>20220906</startdate><enddate>20220906</enddate><creator>Miyagawa, Takashi</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220906</creationdate><title>Functional equation, upper bounds and analogue of Lindelöf hypothesis for the Barnes double zeta-function</title><author>Miyagawa, Takashi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27059152513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Convexity</topic><topic>Functional equations</topic><topic>Mathematical analysis</topic><topic>Upper bounds</topic><toplevel>online_resources</toplevel><creatorcontrib>Miyagawa, Takashi</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miyagawa, Takashi</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Functional equation, upper bounds and analogue of Lindelöf hypothesis for the Barnes double zeta-function</atitle><jtitle>arXiv.org</jtitle><date>2022-09-06</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>The functional equations of the Riemann zeta function, the Hurwitz zeta function, and the Lerch zeta function have been well known for a long time and there are great importance when studying these zeta-functions. For example, fundamental properties of the upper bounds, the distribution of zeros, the zero-free regions in the Riemann zeta function start from functional equations. In this paper, we prove a functional equations of the Barnes double zeta-function \( \zeta_2 (s, \alpha ; v, w ) = \sum_{m=0}^\infty \sum_{n=0}^\infty (\alpha+vm+wn)^{-s} \). Also, applying this functional equation and the Phragmén-Lindel\"of convexity principle, we obtain some upper bounds for \( \zeta_2(\sigma + it, \alpha ; v, w) \ (0\leq \sigma \leq 2) \) with respect to \( t \) as \( t \rightarrow \infty \).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2705915251 |
source | Free E- Journals |
subjects | Convexity Functional equations Mathematical analysis Upper bounds |
title | Functional equation, upper bounds and analogue of Lindelöf hypothesis for the Barnes double zeta-function |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T13%3A25%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Functional%20equation,%20upper%20bounds%20and%20analogue%20of%20Lindel%C3%B6f%20hypothesis%20for%20the%20Barnes%20double%20zeta-function&rft.jtitle=arXiv.org&rft.au=Miyagawa,%20Takashi&rft.date=2022-09-06&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2705915251%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2705915251&rft_id=info:pmid/&rfr_iscdi=true |