Experimental Validation of a Compact Pinhole Latent Defect Model for MOS Transistors

Currently, the semiconductor industry requires test escape levels that approach the ppb level for application domains, such as automotive. Such quality levels, however, can only be reached if latent defects are screened out, as they have become the major bottleneck in analog and mixed-signal IC test...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2022-09, Vol.69 (9), p.4796-4802
Hauptverfasser: Gomez, Jhon, Xama, Nektar, Lootens, Dirk, Coyette, Anthony, Vanhooren, Ronny, Dobbelaere, Wim, Gielen, Georges
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4802
container_issue 9
container_start_page 4796
container_title IEEE transactions on electron devices
container_volume 69
creator Gomez, Jhon
Xama, Nektar
Lootens, Dirk
Coyette, Anthony
Vanhooren, Ronny
Dobbelaere, Wim
Gielen, Georges
description Currently, the semiconductor industry requires test escape levels that approach the ppb level for application domains, such as automotive. Such quality levels, however, can only be reached if latent defects are screened out, as they have become the major bottleneck in analog and mixed-signal IC testing. Latent defects can be activated using accelerated aging, but this procedure has several drawbacks. Most notably, activation can move latent defects to the product lifetime that, otherwise, would not even have expressed themselves. Therefore, methods are needed that allow the detection of these defects without using activation. Developing such methods, however, has been hampered by the lack of compact latent defect models that allow simulating circuits affected by this type of defect. This article alleviates this problem by experimentally validating a recently presented compact model for latent defects and establishing the practical range of model values that should be used in simulations. The experiments performed on a 0.35- \mu \text{m} technology consist of characterizing transistors containing latent defects that have been artificially introduced by etching pinholes in their gate. The measurement results corroborate that the drain current in transistors with defects increases with the area and depth of the defect, and that this behavior can be accurately modeled using an effective {t}_{ox} value.
doi_str_mv 10.1109/TED.2022.3191990
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2705862444</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9837881</ieee_id><sourcerecordid>2705862444</sourcerecordid><originalsourceid>FETCH-LOGICAL-c221t-94bca0074a98ad14ef30a114fbc22f1a31375faf9a739e50e45ddfbdd8ff80a03</originalsourceid><addsrcrecordid>eNo9kEtLAzEQgIMoWKt3wUvA89a8djc5Slsf0FLB1WuY7k5wy3ZTky3ovzelxdMwM9_MMB8ht5xNOGfmoZrPJoIJMZHccGPYGRnxPC8zU6jinIwY4zozUstLchXjJqWFUmJEqvnPDkO7xX6Ajn5C1zYwtL6n3lGgU7_dQT3Qt7b_8h3SBQwJpDN0mKpL32BHnQ90uXqnVYA-tnHwIV6TCwddxJtTHJOPp3k1fckWq-fX6eMiq4XgQ2bUugbGSgVGQ8MVOsmAc-XWqe84SC7L3IEzUEqDOUOVN41bN412TjNgckzuj3t3wX_vMQ524_ehTyetKFmuC6GUShQ7UnXwMQZ0dpcehvBrObMHdza5swd39uQujdwdR1pE_MeNlqXWXP4BCCNqfQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2705862444</pqid></control><display><type>article</type><title>Experimental Validation of a Compact Pinhole Latent Defect Model for MOS Transistors</title><source>IEEE Electronic Library (IEL)</source><creator>Gomez, Jhon ; Xama, Nektar ; Lootens, Dirk ; Coyette, Anthony ; Vanhooren, Ronny ; Dobbelaere, Wim ; Gielen, Georges</creator><creatorcontrib>Gomez, Jhon ; Xama, Nektar ; Lootens, Dirk ; Coyette, Anthony ; Vanhooren, Ronny ; Dobbelaere, Wim ; Gielen, Georges</creatorcontrib><description><![CDATA[Currently, the semiconductor industry requires test escape levels that approach the ppb level for application domains, such as automotive. Such quality levels, however, can only be reached if latent defects are screened out, as they have become the major bottleneck in analog and mixed-signal IC testing. Latent defects can be activated using accelerated aging, but this procedure has several drawbacks. Most notably, activation can move latent defects to the product lifetime that, otherwise, would not even have expressed themselves. Therefore, methods are needed that allow the detection of these defects without using activation. Developing such methods, however, has been hampered by the lack of compact latent defect models that allow simulating circuits affected by this type of defect. This article alleviates this problem by experimentally validating a recently presented compact model for latent defects and establishing the practical range of model values that should be used in simulations. The experiments performed on a 0.35-<inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula> technology consist of characterizing transistors containing latent defects that have been artificially introduced by etching pinholes in their gate. The measurement results corroborate that the drain current in transistors with defects increases with the area and depth of the defect, and that this behavior can be accurately modeled using an effective <inline-formula> <tex-math notation="LaTeX">{t}_{ox} </tex-math></inline-formula> value.]]></description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2022.3191990</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Characterization ; compact modeling ; defect-oriented test ; Defects ; Fabrication ; Integrated circuit modeling ; Integrated circuits ; latent defects ; Logic gates ; Metal oxide semiconductors ; MOS ; MOS devices ; MOSFET ; Pinhole defects ; Pinholes ; Semiconductor devices ; Shape ; Silicon ; Transistors</subject><ispartof>IEEE transactions on electron devices, 2022-09, Vol.69 (9), p.4796-4802</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c221t-94bca0074a98ad14ef30a114fbc22f1a31375faf9a739e50e45ddfbdd8ff80a03</citedby><cites>FETCH-LOGICAL-c221t-94bca0074a98ad14ef30a114fbc22f1a31375faf9a739e50e45ddfbdd8ff80a03</cites><orcidid>0000-0002-3221-4578 ; 0000-0002-3676-1106 ; 0000-0001-5286-1759</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9837881$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9837881$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gomez, Jhon</creatorcontrib><creatorcontrib>Xama, Nektar</creatorcontrib><creatorcontrib>Lootens, Dirk</creatorcontrib><creatorcontrib>Coyette, Anthony</creatorcontrib><creatorcontrib>Vanhooren, Ronny</creatorcontrib><creatorcontrib>Dobbelaere, Wim</creatorcontrib><creatorcontrib>Gielen, Georges</creatorcontrib><title>Experimental Validation of a Compact Pinhole Latent Defect Model for MOS Transistors</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description><![CDATA[Currently, the semiconductor industry requires test escape levels that approach the ppb level for application domains, such as automotive. Such quality levels, however, can only be reached if latent defects are screened out, as they have become the major bottleneck in analog and mixed-signal IC testing. Latent defects can be activated using accelerated aging, but this procedure has several drawbacks. Most notably, activation can move latent defects to the product lifetime that, otherwise, would not even have expressed themselves. Therefore, methods are needed that allow the detection of these defects without using activation. Developing such methods, however, has been hampered by the lack of compact latent defect models that allow simulating circuits affected by this type of defect. This article alleviates this problem by experimentally validating a recently presented compact model for latent defects and establishing the practical range of model values that should be used in simulations. The experiments performed on a 0.35-<inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula> technology consist of characterizing transistors containing latent defects that have been artificially introduced by etching pinholes in their gate. The measurement results corroborate that the drain current in transistors with defects increases with the area and depth of the defect, and that this behavior can be accurately modeled using an effective <inline-formula> <tex-math notation="LaTeX">{t}_{ox} </tex-math></inline-formula> value.]]></description><subject>Characterization</subject><subject>compact modeling</subject><subject>defect-oriented test</subject><subject>Defects</subject><subject>Fabrication</subject><subject>Integrated circuit modeling</subject><subject>Integrated circuits</subject><subject>latent defects</subject><subject>Logic gates</subject><subject>Metal oxide semiconductors</subject><subject>MOS</subject><subject>MOS devices</subject><subject>MOSFET</subject><subject>Pinhole defects</subject><subject>Pinholes</subject><subject>Semiconductor devices</subject><subject>Shape</subject><subject>Silicon</subject><subject>Transistors</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtLAzEQgIMoWKt3wUvA89a8djc5Slsf0FLB1WuY7k5wy3ZTky3ovzelxdMwM9_MMB8ht5xNOGfmoZrPJoIJMZHccGPYGRnxPC8zU6jinIwY4zozUstLchXjJqWFUmJEqvnPDkO7xX6Ajn5C1zYwtL6n3lGgU7_dQT3Qt7b_8h3SBQwJpDN0mKpL32BHnQ90uXqnVYA-tnHwIV6TCwddxJtTHJOPp3k1fckWq-fX6eMiq4XgQ2bUugbGSgVGQ8MVOsmAc-XWqe84SC7L3IEzUEqDOUOVN41bN412TjNgckzuj3t3wX_vMQ524_ehTyetKFmuC6GUShQ7UnXwMQZ0dpcehvBrObMHdza5swd39uQujdwdR1pE_MeNlqXWXP4BCCNqfQ</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Gomez, Jhon</creator><creator>Xama, Nektar</creator><creator>Lootens, Dirk</creator><creator>Coyette, Anthony</creator><creator>Vanhooren, Ronny</creator><creator>Dobbelaere, Wim</creator><creator>Gielen, Georges</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3221-4578</orcidid><orcidid>https://orcid.org/0000-0002-3676-1106</orcidid><orcidid>https://orcid.org/0000-0001-5286-1759</orcidid></search><sort><creationdate>20220901</creationdate><title>Experimental Validation of a Compact Pinhole Latent Defect Model for MOS Transistors</title><author>Gomez, Jhon ; Xama, Nektar ; Lootens, Dirk ; Coyette, Anthony ; Vanhooren, Ronny ; Dobbelaere, Wim ; Gielen, Georges</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c221t-94bca0074a98ad14ef30a114fbc22f1a31375faf9a739e50e45ddfbdd8ff80a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Characterization</topic><topic>compact modeling</topic><topic>defect-oriented test</topic><topic>Defects</topic><topic>Fabrication</topic><topic>Integrated circuit modeling</topic><topic>Integrated circuits</topic><topic>latent defects</topic><topic>Logic gates</topic><topic>Metal oxide semiconductors</topic><topic>MOS</topic><topic>MOS devices</topic><topic>MOSFET</topic><topic>Pinhole defects</topic><topic>Pinholes</topic><topic>Semiconductor devices</topic><topic>Shape</topic><topic>Silicon</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gomez, Jhon</creatorcontrib><creatorcontrib>Xama, Nektar</creatorcontrib><creatorcontrib>Lootens, Dirk</creatorcontrib><creatorcontrib>Coyette, Anthony</creatorcontrib><creatorcontrib>Vanhooren, Ronny</creatorcontrib><creatorcontrib>Dobbelaere, Wim</creatorcontrib><creatorcontrib>Gielen, Georges</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gomez, Jhon</au><au>Xama, Nektar</au><au>Lootens, Dirk</au><au>Coyette, Anthony</au><au>Vanhooren, Ronny</au><au>Dobbelaere, Wim</au><au>Gielen, Georges</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental Validation of a Compact Pinhole Latent Defect Model for MOS Transistors</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>69</volume><issue>9</issue><spage>4796</spage><epage>4802</epage><pages>4796-4802</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract><![CDATA[Currently, the semiconductor industry requires test escape levels that approach the ppb level for application domains, such as automotive. Such quality levels, however, can only be reached if latent defects are screened out, as they have become the major bottleneck in analog and mixed-signal IC testing. Latent defects can be activated using accelerated aging, but this procedure has several drawbacks. Most notably, activation can move latent defects to the product lifetime that, otherwise, would not even have expressed themselves. Therefore, methods are needed that allow the detection of these defects without using activation. Developing such methods, however, has been hampered by the lack of compact latent defect models that allow simulating circuits affected by this type of defect. This article alleviates this problem by experimentally validating a recently presented compact model for latent defects and establishing the practical range of model values that should be used in simulations. The experiments performed on a 0.35-<inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula> technology consist of characterizing transistors containing latent defects that have been artificially introduced by etching pinholes in their gate. The measurement results corroborate that the drain current in transistors with defects increases with the area and depth of the defect, and that this behavior can be accurately modeled using an effective <inline-formula> <tex-math notation="LaTeX">{t}_{ox} </tex-math></inline-formula> value.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2022.3191990</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-3221-4578</orcidid><orcidid>https://orcid.org/0000-0002-3676-1106</orcidid><orcidid>https://orcid.org/0000-0001-5286-1759</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2022-09, Vol.69 (9), p.4796-4802
issn 0018-9383
1557-9646
language eng
recordid cdi_proquest_journals_2705862444
source IEEE Electronic Library (IEL)
subjects Characterization
compact modeling
defect-oriented test
Defects
Fabrication
Integrated circuit modeling
Integrated circuits
latent defects
Logic gates
Metal oxide semiconductors
MOS
MOS devices
MOSFET
Pinhole defects
Pinholes
Semiconductor devices
Shape
Silicon
Transistors
title Experimental Validation of a Compact Pinhole Latent Defect Model for MOS Transistors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T05%3A22%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20Validation%20of%20a%20Compact%20Pinhole%20Latent%20Defect%20Model%20for%20MOS%20Transistors&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Gomez,%20Jhon&rft.date=2022-09-01&rft.volume=69&rft.issue=9&rft.spage=4796&rft.epage=4802&rft.pages=4796-4802&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2022.3191990&rft_dat=%3Cproquest_RIE%3E2705862444%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2705862444&rft_id=info:pmid/&rft_ieee_id=9837881&rfr_iscdi=true