Slim-FCP: Lightweight-Feature-Based Cooperative Perception for Connected Automated Vehicles
Cooperative perception provides a novel way to conquer the sensing limitation on a single automated vehicle and potentially improves driving safety. To reduce the transmission data volume, existing solutions use the intermediate data generated by convolutional neural network (CNN) models, namely, fe...
Gespeichert in:
Veröffentlicht in: | IEEE internet of things journal 2022-09, Vol.9 (17), p.15630-15638 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15638 |
---|---|
container_issue | 17 |
container_start_page | 15630 |
container_title | IEEE internet of things journal |
container_volume | 9 |
creator | Guo, Jingda Carrillo, Dominic Chen, Qi Yang, Qing Fu, Song Lu, Hongsheng Guo, Rui |
description | Cooperative perception provides a novel way to conquer the sensing limitation on a single automated vehicle and potentially improves driving safety. To reduce the transmission data volume, existing solutions use the intermediate data generated by convolutional neural network (CNN) models, namely, feature maps, to achieve cooperative perception. The feature maps are however too large to be transmitted by the current V2X technology. We propose a novel approach, called Slim-FCP, to significantly reduce the transmission data size. It enables a channelwise feature encoder to remove irrelevant features for a better compression ratio. In addition, it adopts an intelligent channel selection strategy through which only representative channels of feature maps are selected for transmission. To evaluate the effectiveness of Slim-FCP, we further define a recall-to-bandwidth (RB) ratio metric to quantitatively measure how the recall of object detection changes with respect to the available network bandwidth. Experiment results show that Slim-FCP reduces the transmission data size by 75%, compared with the best state-of-the-art solution, with a subtle loss on object detection's recall. |
doi_str_mv | 10.1109/JIOT.2022.3153260 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2705854002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9718512</ieee_id><sourcerecordid>2705854002</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-b8fb6e0197c411df403d9fe2d8e21c30ec31a7891c620d1c01a1a08f5970fe643</originalsourceid><addsrcrecordid>eNpNkMFKw0AQhoMoWLQPIF4CnlNndpNN4q0Wq5VCC1YvHpbtZtamtNm42Si-vQkt4mVmYL5_Br4guEIYIUJ--zxbrEYMGBtxTDgTcBIMGGdpFAvBTv_N58GwabYA0MUSzMUgeH_ZlftoOlnehfPyY-O_qa_RlJRvHUX3qqEinFhbk1O-_KJwSU5T7Utbhca6blVVpH0HjVtv96qf3mhT6h01l8GZUbuGhsd-EbxOH1aTp2i-eJxNxvNIcy58tM7MWhBgnuoYsTAx8CI3xIqMGGoOpDmqNMtRCwYFakCFCjKT5CkYEjG_CG4Od2tnP1tqvNza1lXdS8lSSLIkBmAdhQdKO9s0joysXblX7kciyF6j7DXKXqM8auwy14dMSUR_fJ5iliDjv-spbYw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2705854002</pqid></control><display><type>article</type><title>Slim-FCP: Lightweight-Feature-Based Cooperative Perception for Connected Automated Vehicles</title><source>IEEE Electronic Library (IEL)</source><creator>Guo, Jingda ; Carrillo, Dominic ; Chen, Qi ; Yang, Qing ; Fu, Song ; Lu, Hongsheng ; Guo, Rui</creator><creatorcontrib>Guo, Jingda ; Carrillo, Dominic ; Chen, Qi ; Yang, Qing ; Fu, Song ; Lu, Hongsheng ; Guo, Rui</creatorcontrib><description>Cooperative perception provides a novel way to conquer the sensing limitation on a single automated vehicle and potentially improves driving safety. To reduce the transmission data volume, existing solutions use the intermediate data generated by convolutional neural network (CNN) models, namely, feature maps, to achieve cooperative perception. The feature maps are however too large to be transmitted by the current V2X technology. We propose a novel approach, called Slim-FCP, to significantly reduce the transmission data size. It enables a channelwise feature encoder to remove irrelevant features for a better compression ratio. In addition, it adopts an intelligent channel selection strategy through which only representative channels of feature maps are selected for transmission. To evaluate the effectiveness of Slim-FCP, we further define a recall-to-bandwidth (RB) ratio metric to quantitatively measure how the recall of object detection changes with respect to the available network bandwidth. Experiment results show that Slim-FCP reduces the transmission data size by 75%, compared with the best state-of-the-art solution, with a subtle loss on object detection's recall.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2022.3153260</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>3-D object detection ; Artificial neural networks ; automated vehicles (AVs) ; Automation ; Bandwidths ; Coders ; Compression ratio ; Convolution ; cooperative perception ; Cooperative processing ; Decoding ; Feature extraction ; feature fusion ; Feature maps ; Object detection ; Object recognition ; Perception ; Recall ; Receivers ; Semantics ; Task analysis ; Vehicle safety</subject><ispartof>IEEE internet of things journal, 2022-09, Vol.9 (17), p.15630-15638</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-b8fb6e0197c411df403d9fe2d8e21c30ec31a7891c620d1c01a1a08f5970fe643</citedby><cites>FETCH-LOGICAL-c336t-b8fb6e0197c411df403d9fe2d8e21c30ec31a7891c620d1c01a1a08f5970fe643</cites><orcidid>0000-0002-0683-5848 ; 0000-0002-1057-1099 ; 0000-0002-7705-0829 ; 0000-0002-6967-0024</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9718512$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9718512$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Guo, Jingda</creatorcontrib><creatorcontrib>Carrillo, Dominic</creatorcontrib><creatorcontrib>Chen, Qi</creatorcontrib><creatorcontrib>Yang, Qing</creatorcontrib><creatorcontrib>Fu, Song</creatorcontrib><creatorcontrib>Lu, Hongsheng</creatorcontrib><creatorcontrib>Guo, Rui</creatorcontrib><title>Slim-FCP: Lightweight-Feature-Based Cooperative Perception for Connected Automated Vehicles</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>Cooperative perception provides a novel way to conquer the sensing limitation on a single automated vehicle and potentially improves driving safety. To reduce the transmission data volume, existing solutions use the intermediate data generated by convolutional neural network (CNN) models, namely, feature maps, to achieve cooperative perception. The feature maps are however too large to be transmitted by the current V2X technology. We propose a novel approach, called Slim-FCP, to significantly reduce the transmission data size. It enables a channelwise feature encoder to remove irrelevant features for a better compression ratio. In addition, it adopts an intelligent channel selection strategy through which only representative channels of feature maps are selected for transmission. To evaluate the effectiveness of Slim-FCP, we further define a recall-to-bandwidth (RB) ratio metric to quantitatively measure how the recall of object detection changes with respect to the available network bandwidth. Experiment results show that Slim-FCP reduces the transmission data size by 75%, compared with the best state-of-the-art solution, with a subtle loss on object detection's recall.</description><subject>3-D object detection</subject><subject>Artificial neural networks</subject><subject>automated vehicles (AVs)</subject><subject>Automation</subject><subject>Bandwidths</subject><subject>Coders</subject><subject>Compression ratio</subject><subject>Convolution</subject><subject>cooperative perception</subject><subject>Cooperative processing</subject><subject>Decoding</subject><subject>Feature extraction</subject><subject>feature fusion</subject><subject>Feature maps</subject><subject>Object detection</subject><subject>Object recognition</subject><subject>Perception</subject><subject>Recall</subject><subject>Receivers</subject><subject>Semantics</subject><subject>Task analysis</subject><subject>Vehicle safety</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMFKw0AQhoMoWLQPIF4CnlNndpNN4q0Wq5VCC1YvHpbtZtamtNm42Si-vQkt4mVmYL5_Br4guEIYIUJ--zxbrEYMGBtxTDgTcBIMGGdpFAvBTv_N58GwabYA0MUSzMUgeH_ZlftoOlnehfPyY-O_qa_RlJRvHUX3qqEinFhbk1O-_KJwSU5T7Utbhca6blVVpH0HjVtv96qf3mhT6h01l8GZUbuGhsd-EbxOH1aTp2i-eJxNxvNIcy58tM7MWhBgnuoYsTAx8CI3xIqMGGoOpDmqNMtRCwYFakCFCjKT5CkYEjG_CG4Od2tnP1tqvNza1lXdS8lSSLIkBmAdhQdKO9s0joysXblX7kciyF6j7DXKXqM8auwy14dMSUR_fJ5iliDjv-spbYw</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Guo, Jingda</creator><creator>Carrillo, Dominic</creator><creator>Chen, Qi</creator><creator>Yang, Qing</creator><creator>Fu, Song</creator><creator>Lu, Hongsheng</creator><creator>Guo, Rui</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0683-5848</orcidid><orcidid>https://orcid.org/0000-0002-1057-1099</orcidid><orcidid>https://orcid.org/0000-0002-7705-0829</orcidid><orcidid>https://orcid.org/0000-0002-6967-0024</orcidid></search><sort><creationdate>20220901</creationdate><title>Slim-FCP: Lightweight-Feature-Based Cooperative Perception for Connected Automated Vehicles</title><author>Guo, Jingda ; Carrillo, Dominic ; Chen, Qi ; Yang, Qing ; Fu, Song ; Lu, Hongsheng ; Guo, Rui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-b8fb6e0197c411df403d9fe2d8e21c30ec31a7891c620d1c01a1a08f5970fe643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>3-D object detection</topic><topic>Artificial neural networks</topic><topic>automated vehicles (AVs)</topic><topic>Automation</topic><topic>Bandwidths</topic><topic>Coders</topic><topic>Compression ratio</topic><topic>Convolution</topic><topic>cooperative perception</topic><topic>Cooperative processing</topic><topic>Decoding</topic><topic>Feature extraction</topic><topic>feature fusion</topic><topic>Feature maps</topic><topic>Object detection</topic><topic>Object recognition</topic><topic>Perception</topic><topic>Recall</topic><topic>Receivers</topic><topic>Semantics</topic><topic>Task analysis</topic><topic>Vehicle safety</topic><toplevel>online_resources</toplevel><creatorcontrib>Guo, Jingda</creatorcontrib><creatorcontrib>Carrillo, Dominic</creatorcontrib><creatorcontrib>Chen, Qi</creatorcontrib><creatorcontrib>Yang, Qing</creatorcontrib><creatorcontrib>Fu, Song</creatorcontrib><creatorcontrib>Lu, Hongsheng</creatorcontrib><creatorcontrib>Guo, Rui</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Guo, Jingda</au><au>Carrillo, Dominic</au><au>Chen, Qi</au><au>Yang, Qing</au><au>Fu, Song</au><au>Lu, Hongsheng</au><au>Guo, Rui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Slim-FCP: Lightweight-Feature-Based Cooperative Perception for Connected Automated Vehicles</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>9</volume><issue>17</issue><spage>15630</spage><epage>15638</epage><pages>15630-15638</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>Cooperative perception provides a novel way to conquer the sensing limitation on a single automated vehicle and potentially improves driving safety. To reduce the transmission data volume, existing solutions use the intermediate data generated by convolutional neural network (CNN) models, namely, feature maps, to achieve cooperative perception. The feature maps are however too large to be transmitted by the current V2X technology. We propose a novel approach, called Slim-FCP, to significantly reduce the transmission data size. It enables a channelwise feature encoder to remove irrelevant features for a better compression ratio. In addition, it adopts an intelligent channel selection strategy through which only representative channels of feature maps are selected for transmission. To evaluate the effectiveness of Slim-FCP, we further define a recall-to-bandwidth (RB) ratio metric to quantitatively measure how the recall of object detection changes with respect to the available network bandwidth. Experiment results show that Slim-FCP reduces the transmission data size by 75%, compared with the best state-of-the-art solution, with a subtle loss on object detection's recall.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2022.3153260</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0683-5848</orcidid><orcidid>https://orcid.org/0000-0002-1057-1099</orcidid><orcidid>https://orcid.org/0000-0002-7705-0829</orcidid><orcidid>https://orcid.org/0000-0002-6967-0024</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2327-4662 |
ispartof | IEEE internet of things journal, 2022-09, Vol.9 (17), p.15630-15638 |
issn | 2327-4662 2327-4662 |
language | eng |
recordid | cdi_proquest_journals_2705854002 |
source | IEEE Electronic Library (IEL) |
subjects | 3-D object detection Artificial neural networks automated vehicles (AVs) Automation Bandwidths Coders Compression ratio Convolution cooperative perception Cooperative processing Decoding Feature extraction feature fusion Feature maps Object detection Object recognition Perception Recall Receivers Semantics Task analysis Vehicle safety |
title | Slim-FCP: Lightweight-Feature-Based Cooperative Perception for Connected Automated Vehicles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T04%3A05%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Slim-FCP:%20Lightweight-Feature-Based%20Cooperative%20Perception%20for%20Connected%20Automated%20Vehicles&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Guo,%20Jingda&rft.date=2022-09-01&rft.volume=9&rft.issue=17&rft.spage=15630&rft.epage=15638&rft.pages=15630-15638&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2022.3153260&rft_dat=%3Cproquest_RIE%3E2705854002%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2705854002&rft_id=info:pmid/&rft_ieee_id=9718512&rfr_iscdi=true |