Conditioning surface-based geological models to well data using artificial neural networks

Surface-based modelling provides a computationally efficient approach for generating geometrically realistic representations of heterogeneity in reservoir models. However, conditioning Surface-Based Geological Models (SBGMs) to well data can be challenging because it is an ill-posed inverse problem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational geosciences 2022-08, Vol.26 (4), p.779-802
Hauptverfasser: Titus, Zainab, Heaney, Claire, Jacquemyn, Carl, Salinas, Pablo, Jackson, MD, Pain, Christopher
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 802
container_issue 4
container_start_page 779
container_title Computational geosciences
container_volume 26
creator Titus, Zainab
Heaney, Claire
Jacquemyn, Carl
Salinas, Pablo
Jackson, MD
Pain, Christopher
description Surface-based modelling provides a computationally efficient approach for generating geometrically realistic representations of heterogeneity in reservoir models. However, conditioning Surface-Based Geological Models (SBGMs) to well data can be challenging because it is an ill-posed inverse problem with spatially distributed parameters. To aid fast and efficient conditioning, we use here SBGMs that model geometries using parametric, grid-free surfaces that require few parameters to represent even realistic geological architectures. A neural network is trained to learn the underlying process of generating SBGMs by learning the relationship between the parametrized SBGM inputs and the resulting facies identified at well locations. To condition the SBGM to these observed data, inverse modelling of the SBGM inputs is achieved by replacing the forward model with the pre-trained neural network and optimizing the network inputs using the back-propagation technique applied in training the neural network. An analysis of the uncertainties associated with the conditioned realisations demonstrates the applicability of the approach for evaluating spatial variations in geological heterogeneity away from control data in reservoir modelling. This approach for generating geologically plausible models that are calibrated with observed well data could also be extended to other geological modelling techniques such as object- and process-based modelling.
doi_str_mv 10.1007/s10596-021-10088-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2705543567</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2705543567</sourcerecordid><originalsourceid>FETCH-LOGICAL-a386t-99c98183009fa5fd4f8abc82739bfa5ce24d0b8eb880c6d44b300c9c4b523c093</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AVcF19GkSdpkKYMvGHCjGzchr5aMnWZMUgb_vZmp4M7VffCdcy8HgGuMbjFC7V3CiIkGohrDMnMO2QlYYNYSiKkQp6WnNYKFac_BRUobhJBoCV6Aj1UYrc8-jH7sqzTFThkHtUrOVr0LQ-i9UUO1DdYNqcqh2rthqKzKqprSQaJi9p03vkCjm-Kx5H2In-kSnHVqSO7qty7B--PD2-oZrl-fXlb3a6gIbzIUwgiOOSkfdYp1lnZcacPrlghdFsbV1CLNneYcmcZSqgtqhKGa1cQgQZbgZvbdxfA1uZTlJkxxLCdl3SLGKGFNW6h6pkwMKUXXyV30WxW_JUbykKGcM5QlQ3nMULIiIrMoFXjsXfyz_kf1A00XdYM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2705543567</pqid></control><display><type>article</type><title>Conditioning surface-based geological models to well data using artificial neural networks</title><source>SpringerLink Journals</source><creator>Titus, Zainab ; Heaney, Claire ; Jacquemyn, Carl ; Salinas, Pablo ; Jackson, MD ; Pain, Christopher</creator><creatorcontrib>Titus, Zainab ; Heaney, Claire ; Jacquemyn, Carl ; Salinas, Pablo ; Jackson, MD ; Pain, Christopher</creatorcontrib><description>Surface-based modelling provides a computationally efficient approach for generating geometrically realistic representations of heterogeneity in reservoir models. However, conditioning Surface-Based Geological Models (SBGMs) to well data can be challenging because it is an ill-posed inverse problem with spatially distributed parameters. To aid fast and efficient conditioning, we use here SBGMs that model geometries using parametric, grid-free surfaces that require few parameters to represent even realistic geological architectures. A neural network is trained to learn the underlying process of generating SBGMs by learning the relationship between the parametrized SBGM inputs and the resulting facies identified at well locations. To condition the SBGM to these observed data, inverse modelling of the SBGM inputs is achieved by replacing the forward model with the pre-trained neural network and optimizing the network inputs using the back-propagation technique applied in training the neural network. An analysis of the uncertainties associated with the conditioned realisations demonstrates the applicability of the approach for evaluating spatial variations in geological heterogeneity away from control data in reservoir modelling. This approach for generating geologically plausible models that are calibrated with observed well data could also be extended to other geological modelling techniques such as object- and process-based modelling.</description><identifier>ISSN: 1420-0597</identifier><identifier>EISSN: 1573-1499</identifier><identifier>DOI: 10.1007/s10596-021-10088-5</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Artificial neural networks ; Back propagation networks ; Conditioning ; Control data (computers) ; Earth and Environmental Science ; Earth Sciences ; Free surfaces ; Geology ; Geotechnical Engineering &amp; Applied Earth Sciences ; Heterogeneity ; Hydrogeology ; Inverse problems ; Learning ; Mathematical Modeling and Industrial Mathematics ; Mathematical models ; Modelling ; Neural networks ; Original Paper ; Parameters ; Reservoirs ; Soil Science &amp; Conservation ; Spatial variations ; Well data</subject><ispartof>Computational geosciences, 2022-08, Vol.26 (4), p.779-802</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a386t-99c98183009fa5fd4f8abc82739bfa5ce24d0b8eb880c6d44b300c9c4b523c093</citedby><cites>FETCH-LOGICAL-a386t-99c98183009fa5fd4f8abc82739bfa5ce24d0b8eb880c6d44b300c9c4b523c093</cites><orcidid>0000-0002-6555-1423 ; 0000-0002-6012-0640 ; 0000-0002-8627-7144</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10596-021-10088-5$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10596-021-10088-5$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Titus, Zainab</creatorcontrib><creatorcontrib>Heaney, Claire</creatorcontrib><creatorcontrib>Jacquemyn, Carl</creatorcontrib><creatorcontrib>Salinas, Pablo</creatorcontrib><creatorcontrib>Jackson, MD</creatorcontrib><creatorcontrib>Pain, Christopher</creatorcontrib><title>Conditioning surface-based geological models to well data using artificial neural networks</title><title>Computational geosciences</title><addtitle>Comput Geosci</addtitle><description>Surface-based modelling provides a computationally efficient approach for generating geometrically realistic representations of heterogeneity in reservoir models. However, conditioning Surface-Based Geological Models (SBGMs) to well data can be challenging because it is an ill-posed inverse problem with spatially distributed parameters. To aid fast and efficient conditioning, we use here SBGMs that model geometries using parametric, grid-free surfaces that require few parameters to represent even realistic geological architectures. A neural network is trained to learn the underlying process of generating SBGMs by learning the relationship between the parametrized SBGM inputs and the resulting facies identified at well locations. To condition the SBGM to these observed data, inverse modelling of the SBGM inputs is achieved by replacing the forward model with the pre-trained neural network and optimizing the network inputs using the back-propagation technique applied in training the neural network. An analysis of the uncertainties associated with the conditioned realisations demonstrates the applicability of the approach for evaluating spatial variations in geological heterogeneity away from control data in reservoir modelling. This approach for generating geologically plausible models that are calibrated with observed well data could also be extended to other geological modelling techniques such as object- and process-based modelling.</description><subject>Artificial neural networks</subject><subject>Back propagation networks</subject><subject>Conditioning</subject><subject>Control data (computers)</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Free surfaces</subject><subject>Geology</subject><subject>Geotechnical Engineering &amp; Applied Earth Sciences</subject><subject>Heterogeneity</subject><subject>Hydrogeology</subject><subject>Inverse problems</subject><subject>Learning</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Neural networks</subject><subject>Original Paper</subject><subject>Parameters</subject><subject>Reservoirs</subject><subject>Soil Science &amp; Conservation</subject><subject>Spatial variations</subject><subject>Well data</subject><issn>1420-0597</issn><issn>1573-1499</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kEtLxDAUhYMoOI7-AVcF19GkSdpkKYMvGHCjGzchr5aMnWZMUgb_vZmp4M7VffCdcy8HgGuMbjFC7V3CiIkGohrDMnMO2QlYYNYSiKkQp6WnNYKFac_BRUobhJBoCV6Aj1UYrc8-jH7sqzTFThkHtUrOVr0LQ-i9UUO1DdYNqcqh2rthqKzKqprSQaJi9p03vkCjm-Kx5H2In-kSnHVqSO7qty7B--PD2-oZrl-fXlb3a6gIbzIUwgiOOSkfdYp1lnZcacPrlghdFsbV1CLNneYcmcZSqgtqhKGa1cQgQZbgZvbdxfA1uZTlJkxxLCdl3SLGKGFNW6h6pkwMKUXXyV30WxW_JUbykKGcM5QlQ3nMULIiIrMoFXjsXfyz_kf1A00XdYM</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Titus, Zainab</creator><creator>Heaney, Claire</creator><creator>Jacquemyn, Carl</creator><creator>Salinas, Pablo</creator><creator>Jackson, MD</creator><creator>Pain, Christopher</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-6555-1423</orcidid><orcidid>https://orcid.org/0000-0002-6012-0640</orcidid><orcidid>https://orcid.org/0000-0002-8627-7144</orcidid></search><sort><creationdate>20220801</creationdate><title>Conditioning surface-based geological models to well data using artificial neural networks</title><author>Titus, Zainab ; Heaney, Claire ; Jacquemyn, Carl ; Salinas, Pablo ; Jackson, MD ; Pain, Christopher</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a386t-99c98183009fa5fd4f8abc82739bfa5ce24d0b8eb880c6d44b300c9c4b523c093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Back propagation networks</topic><topic>Conditioning</topic><topic>Control data (computers)</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Free surfaces</topic><topic>Geology</topic><topic>Geotechnical Engineering &amp; Applied Earth Sciences</topic><topic>Heterogeneity</topic><topic>Hydrogeology</topic><topic>Inverse problems</topic><topic>Learning</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Neural networks</topic><topic>Original Paper</topic><topic>Parameters</topic><topic>Reservoirs</topic><topic>Soil Science &amp; Conservation</topic><topic>Spatial variations</topic><topic>Well data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Titus, Zainab</creatorcontrib><creatorcontrib>Heaney, Claire</creatorcontrib><creatorcontrib>Jacquemyn, Carl</creatorcontrib><creatorcontrib>Salinas, Pablo</creatorcontrib><creatorcontrib>Jackson, MD</creatorcontrib><creatorcontrib>Pain, Christopher</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Computational geosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Titus, Zainab</au><au>Heaney, Claire</au><au>Jacquemyn, Carl</au><au>Salinas, Pablo</au><au>Jackson, MD</au><au>Pain, Christopher</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conditioning surface-based geological models to well data using artificial neural networks</atitle><jtitle>Computational geosciences</jtitle><stitle>Comput Geosci</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>26</volume><issue>4</issue><spage>779</spage><epage>802</epage><pages>779-802</pages><issn>1420-0597</issn><eissn>1573-1499</eissn><abstract>Surface-based modelling provides a computationally efficient approach for generating geometrically realistic representations of heterogeneity in reservoir models. However, conditioning Surface-Based Geological Models (SBGMs) to well data can be challenging because it is an ill-posed inverse problem with spatially distributed parameters. To aid fast and efficient conditioning, we use here SBGMs that model geometries using parametric, grid-free surfaces that require few parameters to represent even realistic geological architectures. A neural network is trained to learn the underlying process of generating SBGMs by learning the relationship between the parametrized SBGM inputs and the resulting facies identified at well locations. To condition the SBGM to these observed data, inverse modelling of the SBGM inputs is achieved by replacing the forward model with the pre-trained neural network and optimizing the network inputs using the back-propagation technique applied in training the neural network. An analysis of the uncertainties associated with the conditioned realisations demonstrates the applicability of the approach for evaluating spatial variations in geological heterogeneity away from control data in reservoir modelling. This approach for generating geologically plausible models that are calibrated with observed well data could also be extended to other geological modelling techniques such as object- and process-based modelling.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10596-021-10088-5</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0002-6555-1423</orcidid><orcidid>https://orcid.org/0000-0002-6012-0640</orcidid><orcidid>https://orcid.org/0000-0002-8627-7144</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1420-0597
ispartof Computational geosciences, 2022-08, Vol.26 (4), p.779-802
issn 1420-0597
1573-1499
language eng
recordid cdi_proquest_journals_2705543567
source SpringerLink Journals
subjects Artificial neural networks
Back propagation networks
Conditioning
Control data (computers)
Earth and Environmental Science
Earth Sciences
Free surfaces
Geology
Geotechnical Engineering & Applied Earth Sciences
Heterogeneity
Hydrogeology
Inverse problems
Learning
Mathematical Modeling and Industrial Mathematics
Mathematical models
Modelling
Neural networks
Original Paper
Parameters
Reservoirs
Soil Science & Conservation
Spatial variations
Well data
title Conditioning surface-based geological models to well data using artificial neural networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T06%3A08%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conditioning%20surface-based%20geological%20models%20to%20well%20data%20using%20artificial%20neural%20networks&rft.jtitle=Computational%20geosciences&rft.au=Titus,%20Zainab&rft.date=2022-08-01&rft.volume=26&rft.issue=4&rft.spage=779&rft.epage=802&rft.pages=779-802&rft.issn=1420-0597&rft.eissn=1573-1499&rft_id=info:doi/10.1007/s10596-021-10088-5&rft_dat=%3Cproquest_cross%3E2705543567%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2705543567&rft_id=info:pmid/&rfr_iscdi=true