Conditioning surface-based geological models to well data using artificial neural networks

Surface-based modelling provides a computationally efficient approach for generating geometrically realistic representations of heterogeneity in reservoir models. However, conditioning Surface-Based Geological Models (SBGMs) to well data can be challenging because it is an ill-posed inverse problem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational geosciences 2022-08, Vol.26 (4), p.779-802
Hauptverfasser: Titus, Zainab, Heaney, Claire, Jacquemyn, Carl, Salinas, Pablo, Jackson, MD, Pain, Christopher
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Surface-based modelling provides a computationally efficient approach for generating geometrically realistic representations of heterogeneity in reservoir models. However, conditioning Surface-Based Geological Models (SBGMs) to well data can be challenging because it is an ill-posed inverse problem with spatially distributed parameters. To aid fast and efficient conditioning, we use here SBGMs that model geometries using parametric, grid-free surfaces that require few parameters to represent even realistic geological architectures. A neural network is trained to learn the underlying process of generating SBGMs by learning the relationship between the parametrized SBGM inputs and the resulting facies identified at well locations. To condition the SBGM to these observed data, inverse modelling of the SBGM inputs is achieved by replacing the forward model with the pre-trained neural network and optimizing the network inputs using the back-propagation technique applied in training the neural network. An analysis of the uncertainties associated with the conditioned realisations demonstrates the applicability of the approach for evaluating spatial variations in geological heterogeneity away from control data in reservoir modelling. This approach for generating geologically plausible models that are calibrated with observed well data could also be extended to other geological modelling techniques such as object- and process-based modelling.
ISSN:1420-0597
1573-1499
DOI:10.1007/s10596-021-10088-5