Stability Against the Odds: The Case of Chromonic Liquid Crystals
The ground state of chromonic liquid crystals, as revealed by a number of recent experiments, is quite different from that of ordinary nematic liquid crystals: it is twisted instead of uniform. The common explanation provided for this state within the classical elastic theory of Frank demands that o...
Gespeichert in:
Veröffentlicht in: | Journal of nonlinear science 2022-10, Vol.32 (5), Article 74 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | |
container_title | Journal of nonlinear science |
container_volume | 32 |
creator | Paparini, Silvia Virga, Epifanio G. |
description | The ground state of chromonic liquid crystals, as revealed by a number of recent experiments, is quite different from that of ordinary nematic liquid crystals: it is
twisted
instead of uniform. The common explanation provided for this state within the classical elastic theory of Frank demands that one Ericksen’s inequality is violated. Since in general such a violation makes Frank’s elastic free-energy functional unbounded below, the question arises as to whether the twisted ground state can be locally stable. We answer this question in the
affirmative
. In reaching this conclusion, a central role is played by the specific boundary conditions imposed in the experiments on the boundary of rigid containers and by a general formula that we derive here for the second variation in Frank’s elastic free energy. |
doi_str_mv | 10.1007/s00332-022-09833-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2705426085</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2705426085</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-d516499e8c522e185a74ffff23911b6f766924556d05cb164a0813db45cd6e873</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPA82q-P7yVRatQ6MF6DtlNtk1pd9skPfTfG13BmwPDDMP7vgMPAPcYPWKE5FNCiFJSIVJaK0orcQEmmJUTZkJeggnSVFVKS3YNblLaIoQlp2QCZh_ZNmEX8hnO1jb0KcO88XDpXHqGq7LVNnk4dLDexGE_9KGFi3A8BQfreE7Z7tItuOrK8He_cwo-X19W9Vu1WM7f69miaommuXIcC6a1Vy0nxGPFrWRdKUI1xo3opBCaMM6FQ7xtitYihalrGG-d8ErSKXgYcw9xOJ58ymY7nGJfXhoiEWdEIMWLioyqNg4pRd-ZQwx7G88GI_ONyoyoTEFlflAZUUx0NKUi7tc-_kX_4_oCuF5ppw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2705426085</pqid></control><display><type>article</type><title>Stability Against the Odds: The Case of Chromonic Liquid Crystals</title><source>SpringerNature Complete Journals</source><creator>Paparini, Silvia ; Virga, Epifanio G.</creator><creatorcontrib>Paparini, Silvia ; Virga, Epifanio G.</creatorcontrib><description>The ground state of chromonic liquid crystals, as revealed by a number of recent experiments, is quite different from that of ordinary nematic liquid crystals: it is
twisted
instead of uniform. The common explanation provided for this state within the classical elastic theory of Frank demands that one Ericksen’s inequality is violated. Since in general such a violation makes Frank’s elastic free-energy functional unbounded below, the question arises as to whether the twisted ground state can be locally stable. We answer this question in the
affirmative
. In reaching this conclusion, a central role is played by the specific boundary conditions imposed in the experiments on the boundary of rigid containers and by a general formula that we derive here for the second variation in Frank’s elastic free energy.</description><identifier>ISSN: 0938-8974</identifier><identifier>EISSN: 1432-1467</identifier><identifier>DOI: 10.1007/s00332-022-09833-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Analysis ; Boundary conditions ; Classical Mechanics ; Economic Theory/Quantitative Economics/Mathematical Methods ; Free energy ; Ground state ; Liquid crystals ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Nematic crystals ; Questions ; Theoretical</subject><ispartof>Journal of nonlinear science, 2022-10, Vol.32 (5), Article 74</ispartof><rights>The Author(s) 2022. corrected publication 2022</rights><rights>The Author(s) 2022. corrected publication 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-d516499e8c522e185a74ffff23911b6f766924556d05cb164a0813db45cd6e873</citedby><cites>FETCH-LOGICAL-c293t-d516499e8c522e185a74ffff23911b6f766924556d05cb164a0813db45cd6e873</cites><orcidid>0000-0002-2295-8055 ; 0000-0003-3970-0875</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00332-022-09833-6$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00332-022-09833-6$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Paparini, Silvia</creatorcontrib><creatorcontrib>Virga, Epifanio G.</creatorcontrib><title>Stability Against the Odds: The Case of Chromonic Liquid Crystals</title><title>Journal of nonlinear science</title><addtitle>J Nonlinear Sci</addtitle><description>The ground state of chromonic liquid crystals, as revealed by a number of recent experiments, is quite different from that of ordinary nematic liquid crystals: it is
twisted
instead of uniform. The common explanation provided for this state within the classical elastic theory of Frank demands that one Ericksen’s inequality is violated. Since in general such a violation makes Frank’s elastic free-energy functional unbounded below, the question arises as to whether the twisted ground state can be locally stable. We answer this question in the
affirmative
. In reaching this conclusion, a central role is played by the specific boundary conditions imposed in the experiments on the boundary of rigid containers and by a general formula that we derive here for the second variation in Frank’s elastic free energy.</description><subject>Analysis</subject><subject>Boundary conditions</subject><subject>Classical Mechanics</subject><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Free energy</subject><subject>Ground state</subject><subject>Liquid crystals</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nematic crystals</subject><subject>Questions</subject><subject>Theoretical</subject><issn>0938-8974</issn><issn>1432-1467</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wFPA82q-P7yVRatQ6MF6DtlNtk1pd9skPfTfG13BmwPDDMP7vgMPAPcYPWKE5FNCiFJSIVJaK0orcQEmmJUTZkJeggnSVFVKS3YNblLaIoQlp2QCZh_ZNmEX8hnO1jb0KcO88XDpXHqGq7LVNnk4dLDexGE_9KGFi3A8BQfreE7Z7tItuOrK8He_cwo-X19W9Vu1WM7f69miaommuXIcC6a1Vy0nxGPFrWRdKUI1xo3opBCaMM6FQ7xtitYihalrGG-d8ErSKXgYcw9xOJ58ymY7nGJfXhoiEWdEIMWLioyqNg4pRd-ZQwx7G88GI_ONyoyoTEFlflAZUUx0NKUi7tc-_kX_4_oCuF5ppw</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Paparini, Silvia</creator><creator>Virga, Epifanio G.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2295-8055</orcidid><orcidid>https://orcid.org/0000-0003-3970-0875</orcidid></search><sort><creationdate>20221001</creationdate><title>Stability Against the Odds: The Case of Chromonic Liquid Crystals</title><author>Paparini, Silvia ; Virga, Epifanio G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-d516499e8c522e185a74ffff23911b6f766924556d05cb164a0813db45cd6e873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analysis</topic><topic>Boundary conditions</topic><topic>Classical Mechanics</topic><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Free energy</topic><topic>Ground state</topic><topic>Liquid crystals</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nematic crystals</topic><topic>Questions</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paparini, Silvia</creatorcontrib><creatorcontrib>Virga, Epifanio G.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Journal of nonlinear science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paparini, Silvia</au><au>Virga, Epifanio G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability Against the Odds: The Case of Chromonic Liquid Crystals</atitle><jtitle>Journal of nonlinear science</jtitle><stitle>J Nonlinear Sci</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>32</volume><issue>5</issue><artnum>74</artnum><issn>0938-8974</issn><eissn>1432-1467</eissn><abstract>The ground state of chromonic liquid crystals, as revealed by a number of recent experiments, is quite different from that of ordinary nematic liquid crystals: it is
twisted
instead of uniform. The common explanation provided for this state within the classical elastic theory of Frank demands that one Ericksen’s inequality is violated. Since in general such a violation makes Frank’s elastic free-energy functional unbounded below, the question arises as to whether the twisted ground state can be locally stable. We answer this question in the
affirmative
. In reaching this conclusion, a central role is played by the specific boundary conditions imposed in the experiments on the boundary of rigid containers and by a general formula that we derive here for the second variation in Frank’s elastic free energy.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00332-022-09833-6</doi><orcidid>https://orcid.org/0000-0002-2295-8055</orcidid><orcidid>https://orcid.org/0000-0003-3970-0875</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0938-8974 |
ispartof | Journal of nonlinear science, 2022-10, Vol.32 (5), Article 74 |
issn | 0938-8974 1432-1467 |
language | eng |
recordid | cdi_proquest_journals_2705426085 |
source | SpringerNature Complete Journals |
subjects | Analysis Boundary conditions Classical Mechanics Economic Theory/Quantitative Economics/Mathematical Methods Free energy Ground state Liquid crystals Mathematical and Computational Engineering Mathematical and Computational Physics Mathematics Mathematics and Statistics Nematic crystals Questions Theoretical |
title | Stability Against the Odds: The Case of Chromonic Liquid Crystals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T04%3A09%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20Against%20the%20Odds:%20The%20Case%20of%20Chromonic%20Liquid%20Crystals&rft.jtitle=Journal%20of%20nonlinear%20science&rft.au=Paparini,%20Silvia&rft.date=2022-10-01&rft.volume=32&rft.issue=5&rft.artnum=74&rft.issn=0938-8974&rft.eissn=1432-1467&rft_id=info:doi/10.1007/s00332-022-09833-6&rft_dat=%3Cproquest_cross%3E2705426085%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2705426085&rft_id=info:pmid/&rfr_iscdi=true |