Photoelectrochemical hydrogen generation at hybrid rGO-Sn3O4/SnO2 nanocomposite

This study investigates the photoelectrocatalytic water splitting at Sn 3 O 4 and ternary rGO-Sn 3 O 4 /SnO 2 heterostructure nanocomposite materials. The nanocomposite exhibited superior performance compared to Sn 3 O 4 , a result which was related to stronger absorption in the visible region, narr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied electrochemistry 2022-10, Vol.52 (10), p.1469-1480
Hauptverfasser: da Costa Romeiro, Fernanda, Martins, Alysson Stefan, Costa e Silva, Beatriz, Zanoni, Maria Valnice Boldrin, Orlandi, Marcelo Ornaghi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1480
container_issue 10
container_start_page 1469
container_title Journal of applied electrochemistry
container_volume 52
creator da Costa Romeiro, Fernanda
Martins, Alysson Stefan
Costa e Silva, Beatriz
Zanoni, Maria Valnice Boldrin
Orlandi, Marcelo Ornaghi
description This study investigates the photoelectrocatalytic water splitting at Sn 3 O 4 and ternary rGO-Sn 3 O 4 /SnO 2 heterostructure nanocomposite materials. The nanocomposite exhibited superior performance compared to Sn 3 O 4 , a result which was related to stronger absorption in the visible region, narrower band gap energy (1.8 eV), and higher photocurrent under both UV/Vis and visible light irradiation. The nanocomposite was also more efficient at photoexcited charge separation, as reflected in the enhanced H 2 evolution. H 2 production at the rGO-Sn 3 O 4 /SnO 2 electrode reached a value that was twice as high as that of Sn 3 O 4 under optimized photoelectrochemical conditions and UV/Vis irradiation. UV–Vis light induced a faster charge carrier on the nanocomposite’s surface due to the direct excitation of SnO 2 and to posterior electron transfer to the reduced graphene oxide (rGO) followed by electron recombination at Sn 3 O 4 , as well as to electron excitation to the conduction band of Sn 3 O 4 and further H 2 evolution. This work provides an easy and low-cost method for obtaining Sn 3 O 4 -based materials for the production of clean energy. Graphical abstract
doi_str_mv 10.1007/s10800-022-01729-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2705426008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2705426008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-eb993029dfae44a423356fc79d4025826a6c7092d109b4a4e9aab24e29edc6b73</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwNOC59jJJPsnRylahcIKVfAWstlsu6VNarI99NsbXcGbh2Fg5r03w4-QWwb3DKCcRQYVAAVECqxESfkZmbC8RFpVvDonEwBktJLs45JcxbgFAImFmJD6deMHb3fWDMGbjd33Ru-yzakNfm1dlsoGPfTeZXpI4yb0bRYWNV05XovZytWYOe288fuDj_1gr8lFp3fR3vz2KXl_enybP9NlvXiZPyyp4UwO1DZSckDZdtoKoQVynhedKWUrAPMKC12YMr3YMpBN2lupdYPCorStKZqST8ndmHsI_vNo46C2_hhcOqmwhFxgAVAlFY4qE3yMwXbqEPq9DifFQH2DUyM4lcCpH3CKJxMfTTGJ3dqGv-h_XF-K0nBh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2705426008</pqid></control><display><type>article</type><title>Photoelectrochemical hydrogen generation at hybrid rGO-Sn3O4/SnO2 nanocomposite</title><source>Springer Nature - Complete Springer Journals</source><creator>da Costa Romeiro, Fernanda ; Martins, Alysson Stefan ; Costa e Silva, Beatriz ; Zanoni, Maria Valnice Boldrin ; Orlandi, Marcelo Ornaghi</creator><creatorcontrib>da Costa Romeiro, Fernanda ; Martins, Alysson Stefan ; Costa e Silva, Beatriz ; Zanoni, Maria Valnice Boldrin ; Orlandi, Marcelo Ornaghi</creatorcontrib><description>This study investigates the photoelectrocatalytic water splitting at Sn 3 O 4 and ternary rGO-Sn 3 O 4 /SnO 2 heterostructure nanocomposite materials. The nanocomposite exhibited superior performance compared to Sn 3 O 4 , a result which was related to stronger absorption in the visible region, narrower band gap energy (1.8 eV), and higher photocurrent under both UV/Vis and visible light irradiation. The nanocomposite was also more efficient at photoexcited charge separation, as reflected in the enhanced H 2 evolution. H 2 production at the rGO-Sn 3 O 4 /SnO 2 electrode reached a value that was twice as high as that of Sn 3 O 4 under optimized photoelectrochemical conditions and UV/Vis irradiation. UV–Vis light induced a faster charge carrier on the nanocomposite’s surface due to the direct excitation of SnO 2 and to posterior electron transfer to the reduced graphene oxide (rGO) followed by electron recombination at Sn 3 O 4 , as well as to electron excitation to the conduction band of Sn 3 O 4 and further H 2 evolution. This work provides an easy and low-cost method for obtaining Sn 3 O 4 -based materials for the production of clean energy. Graphical abstract</description><identifier>ISSN: 0021-891X</identifier><identifier>EISSN: 1572-8838</identifier><identifier>DOI: 10.1007/s10800-022-01729-3</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Chemistry ; Chemistry and Materials Science ; Clean energy ; Conduction bands ; Current carriers ; Electrochemistry ; Electron recombination ; Electron transfer ; Energy gap ; Excitation ; Graphene ; Heterostructures ; Hydrogen evolution ; Hydrogen production ; Industrial Chemistry/Chemical Engineering ; Light irradiation ; Nanocomposites ; Photoelectric effect ; Physical Chemistry ; Research Article ; Solar Cells ; Tin dioxide ; Water splitting</subject><ispartof>Journal of applied electrochemistry, 2022-10, Vol.52 (10), p.1469-1480</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-eb993029dfae44a423356fc79d4025826a6c7092d109b4a4e9aab24e29edc6b73</citedby><cites>FETCH-LOGICAL-c319t-eb993029dfae44a423356fc79d4025826a6c7092d109b4a4e9aab24e29edc6b73</cites><orcidid>0000-0002-2054-3235</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10800-022-01729-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10800-022-01729-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>da Costa Romeiro, Fernanda</creatorcontrib><creatorcontrib>Martins, Alysson Stefan</creatorcontrib><creatorcontrib>Costa e Silva, Beatriz</creatorcontrib><creatorcontrib>Zanoni, Maria Valnice Boldrin</creatorcontrib><creatorcontrib>Orlandi, Marcelo Ornaghi</creatorcontrib><title>Photoelectrochemical hydrogen generation at hybrid rGO-Sn3O4/SnO2 nanocomposite</title><title>Journal of applied electrochemistry</title><addtitle>J Appl Electrochem</addtitle><description>This study investigates the photoelectrocatalytic water splitting at Sn 3 O 4 and ternary rGO-Sn 3 O 4 /SnO 2 heterostructure nanocomposite materials. The nanocomposite exhibited superior performance compared to Sn 3 O 4 , a result which was related to stronger absorption in the visible region, narrower band gap energy (1.8 eV), and higher photocurrent under both UV/Vis and visible light irradiation. The nanocomposite was also more efficient at photoexcited charge separation, as reflected in the enhanced H 2 evolution. H 2 production at the rGO-Sn 3 O 4 /SnO 2 electrode reached a value that was twice as high as that of Sn 3 O 4 under optimized photoelectrochemical conditions and UV/Vis irradiation. UV–Vis light induced a faster charge carrier on the nanocomposite’s surface due to the direct excitation of SnO 2 and to posterior electron transfer to the reduced graphene oxide (rGO) followed by electron recombination at Sn 3 O 4 , as well as to electron excitation to the conduction band of Sn 3 O 4 and further H 2 evolution. This work provides an easy and low-cost method for obtaining Sn 3 O 4 -based materials for the production of clean energy. Graphical abstract</description><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Clean energy</subject><subject>Conduction bands</subject><subject>Current carriers</subject><subject>Electrochemistry</subject><subject>Electron recombination</subject><subject>Electron transfer</subject><subject>Energy gap</subject><subject>Excitation</subject><subject>Graphene</subject><subject>Heterostructures</subject><subject>Hydrogen evolution</subject><subject>Hydrogen production</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Light irradiation</subject><subject>Nanocomposites</subject><subject>Photoelectric effect</subject><subject>Physical Chemistry</subject><subject>Research Article</subject><subject>Solar Cells</subject><subject>Tin dioxide</subject><subject>Water splitting</subject><issn>0021-891X</issn><issn>1572-8838</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKtfwNOC59jJJPsnRylahcIKVfAWstlsu6VNarI99NsbXcGbh2Fg5r03w4-QWwb3DKCcRQYVAAVECqxESfkZmbC8RFpVvDonEwBktJLs45JcxbgFAImFmJD6deMHb3fWDMGbjd33Ru-yzakNfm1dlsoGPfTeZXpI4yb0bRYWNV05XovZytWYOe288fuDj_1gr8lFp3fR3vz2KXl_enybP9NlvXiZPyyp4UwO1DZSckDZdtoKoQVynhedKWUrAPMKC12YMr3YMpBN2lupdYPCorStKZqST8ndmHsI_vNo46C2_hhcOqmwhFxgAVAlFY4qE3yMwXbqEPq9DifFQH2DUyM4lcCpH3CKJxMfTTGJ3dqGv-h_XF-K0nBh</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>da Costa Romeiro, Fernanda</creator><creator>Martins, Alysson Stefan</creator><creator>Costa e Silva, Beatriz</creator><creator>Zanoni, Maria Valnice Boldrin</creator><creator>Orlandi, Marcelo Ornaghi</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2054-3235</orcidid></search><sort><creationdate>20221001</creationdate><title>Photoelectrochemical hydrogen generation at hybrid rGO-Sn3O4/SnO2 nanocomposite</title><author>da Costa Romeiro, Fernanda ; Martins, Alysson Stefan ; Costa e Silva, Beatriz ; Zanoni, Maria Valnice Boldrin ; Orlandi, Marcelo Ornaghi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-eb993029dfae44a423356fc79d4025826a6c7092d109b4a4e9aab24e29edc6b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Clean energy</topic><topic>Conduction bands</topic><topic>Current carriers</topic><topic>Electrochemistry</topic><topic>Electron recombination</topic><topic>Electron transfer</topic><topic>Energy gap</topic><topic>Excitation</topic><topic>Graphene</topic><topic>Heterostructures</topic><topic>Hydrogen evolution</topic><topic>Hydrogen production</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Light irradiation</topic><topic>Nanocomposites</topic><topic>Photoelectric effect</topic><topic>Physical Chemistry</topic><topic>Research Article</topic><topic>Solar Cells</topic><topic>Tin dioxide</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>da Costa Romeiro, Fernanda</creatorcontrib><creatorcontrib>Martins, Alysson Stefan</creatorcontrib><creatorcontrib>Costa e Silva, Beatriz</creatorcontrib><creatorcontrib>Zanoni, Maria Valnice Boldrin</creatorcontrib><creatorcontrib>Orlandi, Marcelo Ornaghi</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of applied electrochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>da Costa Romeiro, Fernanda</au><au>Martins, Alysson Stefan</au><au>Costa e Silva, Beatriz</au><au>Zanoni, Maria Valnice Boldrin</au><au>Orlandi, Marcelo Ornaghi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photoelectrochemical hydrogen generation at hybrid rGO-Sn3O4/SnO2 nanocomposite</atitle><jtitle>Journal of applied electrochemistry</jtitle><stitle>J Appl Electrochem</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>52</volume><issue>10</issue><spage>1469</spage><epage>1480</epage><pages>1469-1480</pages><issn>0021-891X</issn><eissn>1572-8838</eissn><abstract>This study investigates the photoelectrocatalytic water splitting at Sn 3 O 4 and ternary rGO-Sn 3 O 4 /SnO 2 heterostructure nanocomposite materials. The nanocomposite exhibited superior performance compared to Sn 3 O 4 , a result which was related to stronger absorption in the visible region, narrower band gap energy (1.8 eV), and higher photocurrent under both UV/Vis and visible light irradiation. The nanocomposite was also more efficient at photoexcited charge separation, as reflected in the enhanced H 2 evolution. H 2 production at the rGO-Sn 3 O 4 /SnO 2 electrode reached a value that was twice as high as that of Sn 3 O 4 under optimized photoelectrochemical conditions and UV/Vis irradiation. UV–Vis light induced a faster charge carrier on the nanocomposite’s surface due to the direct excitation of SnO 2 and to posterior electron transfer to the reduced graphene oxide (rGO) followed by electron recombination at Sn 3 O 4 , as well as to electron excitation to the conduction band of Sn 3 O 4 and further H 2 evolution. This work provides an easy and low-cost method for obtaining Sn 3 O 4 -based materials for the production of clean energy. Graphical abstract</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10800-022-01729-3</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2054-3235</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-891X
ispartof Journal of applied electrochemistry, 2022-10, Vol.52 (10), p.1469-1480
issn 0021-891X
1572-8838
language eng
recordid cdi_proquest_journals_2705426008
source Springer Nature - Complete Springer Journals
subjects Chemistry
Chemistry and Materials Science
Clean energy
Conduction bands
Current carriers
Electrochemistry
Electron recombination
Electron transfer
Energy gap
Excitation
Graphene
Heterostructures
Hydrogen evolution
Hydrogen production
Industrial Chemistry/Chemical Engineering
Light irradiation
Nanocomposites
Photoelectric effect
Physical Chemistry
Research Article
Solar Cells
Tin dioxide
Water splitting
title Photoelectrochemical hydrogen generation at hybrid rGO-Sn3O4/SnO2 nanocomposite
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T12%3A11%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photoelectrochemical%20hydrogen%20generation%20at%20hybrid%20rGO-Sn3O4/SnO2%20nanocomposite&rft.jtitle=Journal%20of%20applied%20electrochemistry&rft.au=da%20Costa%20Romeiro,%20Fernanda&rft.date=2022-10-01&rft.volume=52&rft.issue=10&rft.spage=1469&rft.epage=1480&rft.pages=1469-1480&rft.issn=0021-891X&rft.eissn=1572-8838&rft_id=info:doi/10.1007/s10800-022-01729-3&rft_dat=%3Cproquest_cross%3E2705426008%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2705426008&rft_id=info:pmid/&rfr_iscdi=true