Photoelectrochemical hydrogen generation at hybrid rGO-Sn3O4/SnO2 nanocomposite
This study investigates the photoelectrocatalytic water splitting at Sn 3 O 4 and ternary rGO-Sn 3 O 4 /SnO 2 heterostructure nanocomposite materials. The nanocomposite exhibited superior performance compared to Sn 3 O 4 , a result which was related to stronger absorption in the visible region, narr...
Gespeichert in:
Veröffentlicht in: | Journal of applied electrochemistry 2022-10, Vol.52 (10), p.1469-1480 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1480 |
---|---|
container_issue | 10 |
container_start_page | 1469 |
container_title | Journal of applied electrochemistry |
container_volume | 52 |
creator | da Costa Romeiro, Fernanda Martins, Alysson Stefan Costa e Silva, Beatriz Zanoni, Maria Valnice Boldrin Orlandi, Marcelo Ornaghi |
description | This study investigates the photoelectrocatalytic water splitting at Sn
3
O
4
and ternary rGO-Sn
3
O
4
/SnO
2
heterostructure nanocomposite materials. The nanocomposite exhibited superior performance compared to Sn
3
O
4
, a result which was related to stronger absorption in the visible region, narrower band gap energy (1.8 eV), and higher photocurrent under both UV/Vis and visible light irradiation. The nanocomposite was also more efficient at photoexcited charge separation, as reflected in the enhanced H
2
evolution. H
2
production at the rGO-Sn
3
O
4
/SnO
2
electrode reached a value that was twice as high as that of Sn
3
O
4
under optimized photoelectrochemical conditions and UV/Vis irradiation. UV–Vis light induced a faster charge carrier on the nanocomposite’s surface due to the direct excitation of SnO
2
and to posterior electron transfer to the reduced graphene oxide (rGO) followed by electron recombination at Sn
3
O
4
, as well as to electron excitation to the conduction band of Sn
3
O
4
and further H
2
evolution. This work provides an easy and low-cost method for obtaining Sn
3
O
4
-based materials for the production of clean energy.
Graphical abstract |
doi_str_mv | 10.1007/s10800-022-01729-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2705426008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2705426008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-eb993029dfae44a423356fc79d4025826a6c7092d109b4a4e9aab24e29edc6b73</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwNOC59jJJPsnRylahcIKVfAWstlsu6VNarI99NsbXcGbh2Fg5r03w4-QWwb3DKCcRQYVAAVECqxESfkZmbC8RFpVvDonEwBktJLs45JcxbgFAImFmJD6deMHb3fWDMGbjd33Ru-yzakNfm1dlsoGPfTeZXpI4yb0bRYWNV05XovZytWYOe288fuDj_1gr8lFp3fR3vz2KXl_enybP9NlvXiZPyyp4UwO1DZSckDZdtoKoQVynhedKWUrAPMKC12YMr3YMpBN2lupdYPCorStKZqST8ndmHsI_vNo46C2_hhcOqmwhFxgAVAlFY4qE3yMwXbqEPq9DifFQH2DUyM4lcCpH3CKJxMfTTGJ3dqGv-h_XF-K0nBh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2705426008</pqid></control><display><type>article</type><title>Photoelectrochemical hydrogen generation at hybrid rGO-Sn3O4/SnO2 nanocomposite</title><source>Springer Nature - Complete Springer Journals</source><creator>da Costa Romeiro, Fernanda ; Martins, Alysson Stefan ; Costa e Silva, Beatriz ; Zanoni, Maria Valnice Boldrin ; Orlandi, Marcelo Ornaghi</creator><creatorcontrib>da Costa Romeiro, Fernanda ; Martins, Alysson Stefan ; Costa e Silva, Beatriz ; Zanoni, Maria Valnice Boldrin ; Orlandi, Marcelo Ornaghi</creatorcontrib><description>This study investigates the photoelectrocatalytic water splitting at Sn
3
O
4
and ternary rGO-Sn
3
O
4
/SnO
2
heterostructure nanocomposite materials. The nanocomposite exhibited superior performance compared to Sn
3
O
4
, a result which was related to stronger absorption in the visible region, narrower band gap energy (1.8 eV), and higher photocurrent under both UV/Vis and visible light irradiation. The nanocomposite was also more efficient at photoexcited charge separation, as reflected in the enhanced H
2
evolution. H
2
production at the rGO-Sn
3
O
4
/SnO
2
electrode reached a value that was twice as high as that of Sn
3
O
4
under optimized photoelectrochemical conditions and UV/Vis irradiation. UV–Vis light induced a faster charge carrier on the nanocomposite’s surface due to the direct excitation of SnO
2
and to posterior electron transfer to the reduced graphene oxide (rGO) followed by electron recombination at Sn
3
O
4
, as well as to electron excitation to the conduction band of Sn
3
O
4
and further H
2
evolution. This work provides an easy and low-cost method for obtaining Sn
3
O
4
-based materials for the production of clean energy.
Graphical abstract</description><identifier>ISSN: 0021-891X</identifier><identifier>EISSN: 1572-8838</identifier><identifier>DOI: 10.1007/s10800-022-01729-3</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Chemistry ; Chemistry and Materials Science ; Clean energy ; Conduction bands ; Current carriers ; Electrochemistry ; Electron recombination ; Electron transfer ; Energy gap ; Excitation ; Graphene ; Heterostructures ; Hydrogen evolution ; Hydrogen production ; Industrial Chemistry/Chemical Engineering ; Light irradiation ; Nanocomposites ; Photoelectric effect ; Physical Chemistry ; Research Article ; Solar Cells ; Tin dioxide ; Water splitting</subject><ispartof>Journal of applied electrochemistry, 2022-10, Vol.52 (10), p.1469-1480</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-eb993029dfae44a423356fc79d4025826a6c7092d109b4a4e9aab24e29edc6b73</citedby><cites>FETCH-LOGICAL-c319t-eb993029dfae44a423356fc79d4025826a6c7092d109b4a4e9aab24e29edc6b73</cites><orcidid>0000-0002-2054-3235</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10800-022-01729-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10800-022-01729-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>da Costa Romeiro, Fernanda</creatorcontrib><creatorcontrib>Martins, Alysson Stefan</creatorcontrib><creatorcontrib>Costa e Silva, Beatriz</creatorcontrib><creatorcontrib>Zanoni, Maria Valnice Boldrin</creatorcontrib><creatorcontrib>Orlandi, Marcelo Ornaghi</creatorcontrib><title>Photoelectrochemical hydrogen generation at hybrid rGO-Sn3O4/SnO2 nanocomposite</title><title>Journal of applied electrochemistry</title><addtitle>J Appl Electrochem</addtitle><description>This study investigates the photoelectrocatalytic water splitting at Sn
3
O
4
and ternary rGO-Sn
3
O
4
/SnO
2
heterostructure nanocomposite materials. The nanocomposite exhibited superior performance compared to Sn
3
O
4
, a result which was related to stronger absorption in the visible region, narrower band gap energy (1.8 eV), and higher photocurrent under both UV/Vis and visible light irradiation. The nanocomposite was also more efficient at photoexcited charge separation, as reflected in the enhanced H
2
evolution. H
2
production at the rGO-Sn
3
O
4
/SnO
2
electrode reached a value that was twice as high as that of Sn
3
O
4
under optimized photoelectrochemical conditions and UV/Vis irradiation. UV–Vis light induced a faster charge carrier on the nanocomposite’s surface due to the direct excitation of SnO
2
and to posterior electron transfer to the reduced graphene oxide (rGO) followed by electron recombination at Sn
3
O
4
, as well as to electron excitation to the conduction band of Sn
3
O
4
and further H
2
evolution. This work provides an easy and low-cost method for obtaining Sn
3
O
4
-based materials for the production of clean energy.
Graphical abstract</description><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Clean energy</subject><subject>Conduction bands</subject><subject>Current carriers</subject><subject>Electrochemistry</subject><subject>Electron recombination</subject><subject>Electron transfer</subject><subject>Energy gap</subject><subject>Excitation</subject><subject>Graphene</subject><subject>Heterostructures</subject><subject>Hydrogen evolution</subject><subject>Hydrogen production</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Light irradiation</subject><subject>Nanocomposites</subject><subject>Photoelectric effect</subject><subject>Physical Chemistry</subject><subject>Research Article</subject><subject>Solar Cells</subject><subject>Tin dioxide</subject><subject>Water splitting</subject><issn>0021-891X</issn><issn>1572-8838</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKtfwNOC59jJJPsnRylahcIKVfAWstlsu6VNarI99NsbXcGbh2Fg5r03w4-QWwb3DKCcRQYVAAVECqxESfkZmbC8RFpVvDonEwBktJLs45JcxbgFAImFmJD6deMHb3fWDMGbjd33Ru-yzakNfm1dlsoGPfTeZXpI4yb0bRYWNV05XovZytWYOe288fuDj_1gr8lFp3fR3vz2KXl_enybP9NlvXiZPyyp4UwO1DZSckDZdtoKoQVynhedKWUrAPMKC12YMr3YMpBN2lupdYPCorStKZqST8ndmHsI_vNo46C2_hhcOqmwhFxgAVAlFY4qE3yMwXbqEPq9DifFQH2DUyM4lcCpH3CKJxMfTTGJ3dqGv-h_XF-K0nBh</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>da Costa Romeiro, Fernanda</creator><creator>Martins, Alysson Stefan</creator><creator>Costa e Silva, Beatriz</creator><creator>Zanoni, Maria Valnice Boldrin</creator><creator>Orlandi, Marcelo Ornaghi</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2054-3235</orcidid></search><sort><creationdate>20221001</creationdate><title>Photoelectrochemical hydrogen generation at hybrid rGO-Sn3O4/SnO2 nanocomposite</title><author>da Costa Romeiro, Fernanda ; Martins, Alysson Stefan ; Costa e Silva, Beatriz ; Zanoni, Maria Valnice Boldrin ; Orlandi, Marcelo Ornaghi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-eb993029dfae44a423356fc79d4025826a6c7092d109b4a4e9aab24e29edc6b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Clean energy</topic><topic>Conduction bands</topic><topic>Current carriers</topic><topic>Electrochemistry</topic><topic>Electron recombination</topic><topic>Electron transfer</topic><topic>Energy gap</topic><topic>Excitation</topic><topic>Graphene</topic><topic>Heterostructures</topic><topic>Hydrogen evolution</topic><topic>Hydrogen production</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Light irradiation</topic><topic>Nanocomposites</topic><topic>Photoelectric effect</topic><topic>Physical Chemistry</topic><topic>Research Article</topic><topic>Solar Cells</topic><topic>Tin dioxide</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>da Costa Romeiro, Fernanda</creatorcontrib><creatorcontrib>Martins, Alysson Stefan</creatorcontrib><creatorcontrib>Costa e Silva, Beatriz</creatorcontrib><creatorcontrib>Zanoni, Maria Valnice Boldrin</creatorcontrib><creatorcontrib>Orlandi, Marcelo Ornaghi</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of applied electrochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>da Costa Romeiro, Fernanda</au><au>Martins, Alysson Stefan</au><au>Costa e Silva, Beatriz</au><au>Zanoni, Maria Valnice Boldrin</au><au>Orlandi, Marcelo Ornaghi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photoelectrochemical hydrogen generation at hybrid rGO-Sn3O4/SnO2 nanocomposite</atitle><jtitle>Journal of applied electrochemistry</jtitle><stitle>J Appl Electrochem</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>52</volume><issue>10</issue><spage>1469</spage><epage>1480</epage><pages>1469-1480</pages><issn>0021-891X</issn><eissn>1572-8838</eissn><abstract>This study investigates the photoelectrocatalytic water splitting at Sn
3
O
4
and ternary rGO-Sn
3
O
4
/SnO
2
heterostructure nanocomposite materials. The nanocomposite exhibited superior performance compared to Sn
3
O
4
, a result which was related to stronger absorption in the visible region, narrower band gap energy (1.8 eV), and higher photocurrent under both UV/Vis and visible light irradiation. The nanocomposite was also more efficient at photoexcited charge separation, as reflected in the enhanced H
2
evolution. H
2
production at the rGO-Sn
3
O
4
/SnO
2
electrode reached a value that was twice as high as that of Sn
3
O
4
under optimized photoelectrochemical conditions and UV/Vis irradiation. UV–Vis light induced a faster charge carrier on the nanocomposite’s surface due to the direct excitation of SnO
2
and to posterior electron transfer to the reduced graphene oxide (rGO) followed by electron recombination at Sn
3
O
4
, as well as to electron excitation to the conduction band of Sn
3
O
4
and further H
2
evolution. This work provides an easy and low-cost method for obtaining Sn
3
O
4
-based materials for the production of clean energy.
Graphical abstract</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10800-022-01729-3</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2054-3235</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-891X |
ispartof | Journal of applied electrochemistry, 2022-10, Vol.52 (10), p.1469-1480 |
issn | 0021-891X 1572-8838 |
language | eng |
recordid | cdi_proquest_journals_2705426008 |
source | Springer Nature - Complete Springer Journals |
subjects | Chemistry Chemistry and Materials Science Clean energy Conduction bands Current carriers Electrochemistry Electron recombination Electron transfer Energy gap Excitation Graphene Heterostructures Hydrogen evolution Hydrogen production Industrial Chemistry/Chemical Engineering Light irradiation Nanocomposites Photoelectric effect Physical Chemistry Research Article Solar Cells Tin dioxide Water splitting |
title | Photoelectrochemical hydrogen generation at hybrid rGO-Sn3O4/SnO2 nanocomposite |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T12%3A11%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photoelectrochemical%20hydrogen%20generation%20at%20hybrid%20rGO-Sn3O4/SnO2%20nanocomposite&rft.jtitle=Journal%20of%20applied%20electrochemistry&rft.au=da%20Costa%20Romeiro,%20Fernanda&rft.date=2022-10-01&rft.volume=52&rft.issue=10&rft.spage=1469&rft.epage=1480&rft.pages=1469-1480&rft.issn=0021-891X&rft.eissn=1572-8838&rft_id=info:doi/10.1007/s10800-022-01729-3&rft_dat=%3Cproquest_cross%3E2705426008%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2705426008&rft_id=info:pmid/&rfr_iscdi=true |