Quantitative Universal Approximation Bounds for Deep Belief Networks
We show that deep belief networks with binary hidden units can approximate any multivariate probability density under very mild integrability requirements on the parental density of the visible nodes. The approximation is measured in the \(L^q\)-norm for \(q\in[1,\infty]\) (\(q=\infty\) correspondin...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-08 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Sieber, Julian Gehringer, Johann |
description | We show that deep belief networks with binary hidden units can approximate any multivariate probability density under very mild integrability requirements on the parental density of the visible nodes. The approximation is measured in the \(L^q\)-norm for \(q\in[1,\infty]\) (\(q=\infty\) corresponding to the supremum norm) and in Kullback-Leibler divergence. Furthermore, we establish sharp quantitative bounds on the approximation error in terms of the number of hidden units. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2705198234</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2705198234</sourcerecordid><originalsourceid>FETCH-proquest_journals_27051982343</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRwCSxNzCvJLEksySxLVQjNA5JFxYk5Co4FBUX5FZm5QPH8PAWn_NK8lGKFtPwiBZfU1AIFp9SczNQ0Bb_UkvL8ouxiHgbWtMSc4lReKM3NoOzmGuLsoQs0o7A0tbgkPiu_tCgPKBVvZG5gamhpYWRsYkycKgB--Dry</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2705198234</pqid></control><display><type>article</type><title>Quantitative Universal Approximation Bounds for Deep Belief Networks</title><source>Free E- Journals</source><creator>Sieber, Julian ; Gehringer, Johann</creator><creatorcontrib>Sieber, Julian ; Gehringer, Johann</creatorcontrib><description>We show that deep belief networks with binary hidden units can approximate any multivariate probability density under very mild integrability requirements on the parental density of the visible nodes. The approximation is measured in the \(L^q\)-norm for \(q\in[1,\infty]\) (\(q=\infty\) corresponding to the supremum norm) and in Kullback-Leibler divergence. Furthermore, we establish sharp quantitative bounds on the approximation error in terms of the number of hidden units.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Approximation ; Belief networks ; Density ; Mathematical analysis</subject><ispartof>arXiv.org, 2022-08</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Sieber, Julian</creatorcontrib><creatorcontrib>Gehringer, Johann</creatorcontrib><title>Quantitative Universal Approximation Bounds for Deep Belief Networks</title><title>arXiv.org</title><description>We show that deep belief networks with binary hidden units can approximate any multivariate probability density under very mild integrability requirements on the parental density of the visible nodes. The approximation is measured in the \(L^q\)-norm for \(q\in[1,\infty]\) (\(q=\infty\) corresponding to the supremum norm) and in Kullback-Leibler divergence. Furthermore, we establish sharp quantitative bounds on the approximation error in terms of the number of hidden units.</description><subject>Approximation</subject><subject>Belief networks</subject><subject>Density</subject><subject>Mathematical analysis</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRwCSxNzCvJLEksySxLVQjNA5JFxYk5Co4FBUX5FZm5QPH8PAWn_NK8lGKFtPwiBZfU1AIFp9SczNQ0Bb_UkvL8ouxiHgbWtMSc4lReKM3NoOzmGuLsoQs0o7A0tbgkPiu_tCgPKBVvZG5gamhpYWRsYkycKgB--Dry</recordid><startdate>20220818</startdate><enddate>20220818</enddate><creator>Sieber, Julian</creator><creator>Gehringer, Johann</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220818</creationdate><title>Quantitative Universal Approximation Bounds for Deep Belief Networks</title><author>Sieber, Julian ; Gehringer, Johann</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27051982343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Approximation</topic><topic>Belief networks</topic><topic>Density</topic><topic>Mathematical analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Sieber, Julian</creatorcontrib><creatorcontrib>Gehringer, Johann</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sieber, Julian</au><au>Gehringer, Johann</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Quantitative Universal Approximation Bounds for Deep Belief Networks</atitle><jtitle>arXiv.org</jtitle><date>2022-08-18</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>We show that deep belief networks with binary hidden units can approximate any multivariate probability density under very mild integrability requirements on the parental density of the visible nodes. The approximation is measured in the \(L^q\)-norm for \(q\in[1,\infty]\) (\(q=\infty\) corresponding to the supremum norm) and in Kullback-Leibler divergence. Furthermore, we establish sharp quantitative bounds on the approximation error in terms of the number of hidden units.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-08 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2705198234 |
source | Free E- Journals |
subjects | Approximation Belief networks Density Mathematical analysis |
title | Quantitative Universal Approximation Bounds for Deep Belief Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T09%3A59%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Quantitative%20Universal%20Approximation%20Bounds%20for%20Deep%20Belief%20Networks&rft.jtitle=arXiv.org&rft.au=Sieber,%20Julian&rft.date=2022-08-18&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2705198234%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2705198234&rft_id=info:pmid/&rfr_iscdi=true |