Enhanced soot oxidation by oxygen vacancies via K+ doped CuFe2O4 spinel catalysts
Summary Soot particulate emitting from diesel engines are serious to both human health and environment. Efficient catalyst is vital in diesel particulate filter technology to decrease soot oxidation temperature. Cu1−xKxFe2O4 (x = 0, 0.05, 0.1, and 0.15) catalysts are synthesized and analyzed with XR...
Gespeichert in:
Veröffentlicht in: | International journal of energy research 2022-09, Vol.46 (11), p.15376-15386 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15386 |
---|---|
container_issue | 11 |
container_start_page | 15376 |
container_title | International journal of energy research |
container_volume | 46 |
creator | Li, Tianle Abuelgasim, Siddig Wang, Wenju Xiao, Yupeng Liu, Chenlong Ying, Yaoyao Liu, Dong |
description | Summary
Soot particulate emitting from diesel engines are serious to both human health and environment. Efficient catalyst is vital in diesel particulate filter technology to decrease soot oxidation temperature. Cu1−xKxFe2O4 (x = 0, 0.05, 0.1, and 0.15) catalysts are synthesized and analyzed with XRD, Raman, BET, SEM, TEM, TG, EDS, XPS, catalytic activity tests, and kinetic analysis. The results suggests that many factors affect the catalytic activity, and the contents of oxygen vacancies are dominant. A large amount of oxygen vacancies which facilitate to the soot oxidation are created with the assistance of K+, and they increase with the increasing doping contents. Excessive surface concentration of K+ may lead to the partially covering of active sites of the catalysts. Therefore, Cu0.9K0.1Fe2O4 catalyst exhibits the best catalytic activity in soot oxidation, which decreases the Tmax of soot by 279°C. This decrease makes it highly promising for application in diesel particulate filter.
The order of catalytic activity is CuFe2O4 |
doi_str_mv | 10.1002/er.8237 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2704794512</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2704794512</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1497-1c8c8d8a985df745a9a8458ecad100a3d1f024dd14402877a80bfc46600aaee53</originalsourceid><addsrcrecordid>eNotkFFLwzAUhYMoOKf4FwI-js4kTZvkUcY2xcFQFPYW7pJUM2pTm27af2_GfDpczsc9nIPQLSVTSgi7d91UslycoRElSmWU8s05GpG8zDNFxOYSXcW4IyR5VIzQy7z5hMY4i2MIPQ6_3kLvQ4O3QzqGD9fgA5hEeBfxwQN-nmAb2sTP9gvH1hzH1jeuxgZ6qIfYx2t0UUEd3c2_jtH7Yv42e8xW6-XT7GGVtZQrkVEjjbQSlCxsJXgBCiQvpDNgUw3ILa0I49ZSzgmTQoAk28rwskwmOFfkY3R3-tt24XvvYq93Yd81KVIzQbhQvKAsUZMT9eNrN-i281_QDZoSfRxLu04fx9Lz16Pkf3yxXOg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2704794512</pqid></control><display><type>article</type><title>Enhanced soot oxidation by oxygen vacancies via K+ doped CuFe2O4 spinel catalysts</title><source>Wiley Journals</source><creator>Li, Tianle ; Abuelgasim, Siddig ; Wang, Wenju ; Xiao, Yupeng ; Liu, Chenlong ; Ying, Yaoyao ; Liu, Dong</creator><creatorcontrib>Li, Tianle ; Abuelgasim, Siddig ; Wang, Wenju ; Xiao, Yupeng ; Liu, Chenlong ; Ying, Yaoyao ; Liu, Dong</creatorcontrib><description>Summary
Soot particulate emitting from diesel engines are serious to both human health and environment. Efficient catalyst is vital in diesel particulate filter technology to decrease soot oxidation temperature. Cu1−xKxFe2O4 (x = 0, 0.05, 0.1, and 0.15) catalysts are synthesized and analyzed with XRD, Raman, BET, SEM, TEM, TG, EDS, XPS, catalytic activity tests, and kinetic analysis. The results suggests that many factors affect the catalytic activity, and the contents of oxygen vacancies are dominant. A large amount of oxygen vacancies which facilitate to the soot oxidation are created with the assistance of K+, and they increase with the increasing doping contents. Excessive surface concentration of K+ may lead to the partially covering of active sites of the catalysts. Therefore, Cu0.9K0.1Fe2O4 catalyst exhibits the best catalytic activity in soot oxidation, which decreases the Tmax of soot by 279°C. This decrease makes it highly promising for application in diesel particulate filter.
The order of catalytic activity is CuFe2O4 < Cu0.95K0.05Fe2O4 < Cu0.85K0.15Fe2O4 < Cu0.9K0.1Fe2O4. Surface oxygen vacancies are created by the doping of potassium to improve the catalytic performance of CuFe2O4. Kinetic analysis was used to investigate the mechanism between soot and Cu1−xKxFe2O4 catalyst.</description><identifier>ISSN: 0363-907X</identifier><identifier>EISSN: 1099-114X</identifier><identifier>DOI: 10.1002/er.8237</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Inc</publisher><subject>Catalysts ; Catalytic activity ; Chemical synthesis ; Diesel ; Diesel engines ; doping ; Fluid filters ; Internal combustion engines ; kinetic analysis ; Oxidation ; Oxygen ; oxygen vacancies ; Potassium ; Soot ; soot oxidation ; Vacancies ; X ray photoelectron spectroscopy</subject><ispartof>International journal of energy research, 2022-09, Vol.46 (11), p.15376-15386</ispartof><rights>2022 John Wiley & Sons Ltd.</rights><rights>2022 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-7166-7986</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fer.8237$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fer.8237$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Li, Tianle</creatorcontrib><creatorcontrib>Abuelgasim, Siddig</creatorcontrib><creatorcontrib>Wang, Wenju</creatorcontrib><creatorcontrib>Xiao, Yupeng</creatorcontrib><creatorcontrib>Liu, Chenlong</creatorcontrib><creatorcontrib>Ying, Yaoyao</creatorcontrib><creatorcontrib>Liu, Dong</creatorcontrib><title>Enhanced soot oxidation by oxygen vacancies via K+ doped CuFe2O4 spinel catalysts</title><title>International journal of energy research</title><description>Summary
Soot particulate emitting from diesel engines are serious to both human health and environment. Efficient catalyst is vital in diesel particulate filter technology to decrease soot oxidation temperature. Cu1−xKxFe2O4 (x = 0, 0.05, 0.1, and 0.15) catalysts are synthesized and analyzed with XRD, Raman, BET, SEM, TEM, TG, EDS, XPS, catalytic activity tests, and kinetic analysis. The results suggests that many factors affect the catalytic activity, and the contents of oxygen vacancies are dominant. A large amount of oxygen vacancies which facilitate to the soot oxidation are created with the assistance of K+, and they increase with the increasing doping contents. Excessive surface concentration of K+ may lead to the partially covering of active sites of the catalysts. Therefore, Cu0.9K0.1Fe2O4 catalyst exhibits the best catalytic activity in soot oxidation, which decreases the Tmax of soot by 279°C. This decrease makes it highly promising for application in diesel particulate filter.
The order of catalytic activity is CuFe2O4 < Cu0.95K0.05Fe2O4 < Cu0.85K0.15Fe2O4 < Cu0.9K0.1Fe2O4. Surface oxygen vacancies are created by the doping of potassium to improve the catalytic performance of CuFe2O4. Kinetic analysis was used to investigate the mechanism between soot and Cu1−xKxFe2O4 catalyst.</description><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Chemical synthesis</subject><subject>Diesel</subject><subject>Diesel engines</subject><subject>doping</subject><subject>Fluid filters</subject><subject>Internal combustion engines</subject><subject>kinetic analysis</subject><subject>Oxidation</subject><subject>Oxygen</subject><subject>oxygen vacancies</subject><subject>Potassium</subject><subject>Soot</subject><subject>soot oxidation</subject><subject>Vacancies</subject><subject>X ray photoelectron spectroscopy</subject><issn>0363-907X</issn><issn>1099-114X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNotkFFLwzAUhYMoOKf4FwI-js4kTZvkUcY2xcFQFPYW7pJUM2pTm27af2_GfDpczsc9nIPQLSVTSgi7d91UslycoRElSmWU8s05GpG8zDNFxOYSXcW4IyR5VIzQy7z5hMY4i2MIPQ6_3kLvQ4O3QzqGD9fgA5hEeBfxwQN-nmAb2sTP9gvH1hzH1jeuxgZ6qIfYx2t0UUEd3c2_jtH7Yv42e8xW6-XT7GGVtZQrkVEjjbQSlCxsJXgBCiQvpDNgUw3ILa0I49ZSzgmTQoAk28rwskwmOFfkY3R3-tt24XvvYq93Yd81KVIzQbhQvKAsUZMT9eNrN-i281_QDZoSfRxLu04fx9Lz16Pkf3yxXOg</recordid><startdate>202209</startdate><enddate>202209</enddate><creator>Li, Tianle</creator><creator>Abuelgasim, Siddig</creator><creator>Wang, Wenju</creator><creator>Xiao, Yupeng</creator><creator>Liu, Chenlong</creator><creator>Ying, Yaoyao</creator><creator>Liu, Dong</creator><general>John Wiley & Sons, Inc</general><general>Hindawi Limited</general><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7TN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-7166-7986</orcidid></search><sort><creationdate>202209</creationdate><title>Enhanced soot oxidation by oxygen vacancies via K+ doped CuFe2O4 spinel catalysts</title><author>Li, Tianle ; Abuelgasim, Siddig ; Wang, Wenju ; Xiao, Yupeng ; Liu, Chenlong ; Ying, Yaoyao ; Liu, Dong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1497-1c8c8d8a985df745a9a8458ecad100a3d1f024dd14402877a80bfc46600aaee53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Chemical synthesis</topic><topic>Diesel</topic><topic>Diesel engines</topic><topic>doping</topic><topic>Fluid filters</topic><topic>Internal combustion engines</topic><topic>kinetic analysis</topic><topic>Oxidation</topic><topic>Oxygen</topic><topic>oxygen vacancies</topic><topic>Potassium</topic><topic>Soot</topic><topic>soot oxidation</topic><topic>Vacancies</topic><topic>X ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Tianle</creatorcontrib><creatorcontrib>Abuelgasim, Siddig</creatorcontrib><creatorcontrib>Wang, Wenju</creatorcontrib><creatorcontrib>Xiao, Yupeng</creatorcontrib><creatorcontrib>Liu, Chenlong</creatorcontrib><creatorcontrib>Ying, Yaoyao</creatorcontrib><creatorcontrib>Liu, Dong</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>International journal of energy research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Tianle</au><au>Abuelgasim, Siddig</au><au>Wang, Wenju</au><au>Xiao, Yupeng</au><au>Liu, Chenlong</au><au>Ying, Yaoyao</au><au>Liu, Dong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced soot oxidation by oxygen vacancies via K+ doped CuFe2O4 spinel catalysts</atitle><jtitle>International journal of energy research</jtitle><date>2022-09</date><risdate>2022</risdate><volume>46</volume><issue>11</issue><spage>15376</spage><epage>15386</epage><pages>15376-15386</pages><issn>0363-907X</issn><eissn>1099-114X</eissn><abstract>Summary
Soot particulate emitting from diesel engines are serious to both human health and environment. Efficient catalyst is vital in diesel particulate filter technology to decrease soot oxidation temperature. Cu1−xKxFe2O4 (x = 0, 0.05, 0.1, and 0.15) catalysts are synthesized and analyzed with XRD, Raman, BET, SEM, TEM, TG, EDS, XPS, catalytic activity tests, and kinetic analysis. The results suggests that many factors affect the catalytic activity, and the contents of oxygen vacancies are dominant. A large amount of oxygen vacancies which facilitate to the soot oxidation are created with the assistance of K+, and they increase with the increasing doping contents. Excessive surface concentration of K+ may lead to the partially covering of active sites of the catalysts. Therefore, Cu0.9K0.1Fe2O4 catalyst exhibits the best catalytic activity in soot oxidation, which decreases the Tmax of soot by 279°C. This decrease makes it highly promising for application in diesel particulate filter.
The order of catalytic activity is CuFe2O4 < Cu0.95K0.05Fe2O4 < Cu0.85K0.15Fe2O4 < Cu0.9K0.1Fe2O4. Surface oxygen vacancies are created by the doping of potassium to improve the catalytic performance of CuFe2O4. Kinetic analysis was used to investigate the mechanism between soot and Cu1−xKxFe2O4 catalyst.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/er.8237</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7166-7986</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0363-907X |
ispartof | International journal of energy research, 2022-09, Vol.46 (11), p.15376-15386 |
issn | 0363-907X 1099-114X |
language | eng |
recordid | cdi_proquest_journals_2704794512 |
source | Wiley Journals |
subjects | Catalysts Catalytic activity Chemical synthesis Diesel Diesel engines doping Fluid filters Internal combustion engines kinetic analysis Oxidation Oxygen oxygen vacancies Potassium Soot soot oxidation Vacancies X ray photoelectron spectroscopy |
title | Enhanced soot oxidation by oxygen vacancies via K+ doped CuFe2O4 spinel catalysts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A22%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20soot%20oxidation%20by%20oxygen%20vacancies%20via%20K+%20doped%20CuFe2O4%20spinel%20catalysts&rft.jtitle=International%20journal%20of%20energy%20research&rft.au=Li,%20Tianle&rft.date=2022-09&rft.volume=46&rft.issue=11&rft.spage=15376&rft.epage=15386&rft.pages=15376-15386&rft.issn=0363-907X&rft.eissn=1099-114X&rft_id=info:doi/10.1002/er.8237&rft_dat=%3Cproquest_wiley%3E2704794512%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2704794512&rft_id=info:pmid/&rfr_iscdi=true |