Hierarchically structured silicon/graphene composites wrapped by interconnected carbon nanotube branches for lithium‐ion battery anodes

Summary Despite a high theoretical capacity, relatively low potential, and natural abundance, the practical application of Si anode is limited by a drastic volume change and low electrical conductivity. To resolve these issues, herein, we demonstrated a hierarchically structured composite, consistin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of energy research 2022-09, Vol.46 (11), p.15627-15638
Hauptverfasser: Lee, Sang Joon, Joe, Yun Sang, Yeon, Jeong Seok, Min, Dong Hyun, Shin, Kang Ho, Baek, Sang Ha, Xiong, Peixun, Nakhanivej, Puritut, Park, Ho Seok
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15638
container_issue 11
container_start_page 15627
container_title International journal of energy research
container_volume 46
creator Lee, Sang Joon
Joe, Yun Sang
Yeon, Jeong Seok
Min, Dong Hyun
Shin, Kang Ho
Baek, Sang Ha
Xiong, Peixun
Nakhanivej, Puritut
Park, Ho Seok
description Summary Despite a high theoretical capacity, relatively low potential, and natural abundance, the practical application of Si anode is limited by a drastic volume change and low electrical conductivity. To resolve these issues, herein, we demonstrated a hierarchically structured composite, consisting of Si microparticle/reduced graphene oxide (rGO) wrapped by interconnected carbon nanotube (CNT) branches (CNT@NiNP@Si/rGO), for lithium‐ion battery (LIB) anodes. Chemical vapor deposition is used to in situ grow CNT branches integrated onto the rGO and to encapsulate Ni nanoparticles (NiNP) at the tip of CNTs for the construction of three‐dimensional (3D) hierarchical complex structures. Moreover, ultrasonication is required for achieving uniform dispersion of NiNP catalyst for the growth of well‐defined CNT branches. The resulting CNT@NiNP@Si/rGO composites deliver the high rate capacity of 806 mAh g−1 at 8,400 mA g−1 and high capacity of 973 mAh g−1 after 250 cycles. Consequently, these improved performances of CNT@NiNP@Si/rGO composites are attributed to the effect of stress delocalization and facilitated charge transfer of Si arising from the hierarchical structure and covalent SiC bonds. The three‐dimensional hierarchical CNT@NiNP@Si/rGO composite structure is constructed using chemical vapor deposition to in situ grow CNT branches from well‐dispersed NiNP catalyst to encapsulate Si/rGO. Thus, CNT@NiNP@Si/rGO composite greatly improved cyclic stability and rate capability of the pristine Si microparticles owing to the effect of stress delocalization and facilitated charge transfer of Si arising from the hierarchical structure and covalent SiC bonds.
doi_str_mv 10.1002/er.8258
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2704794448</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2704794448</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2898-fc491d29503508dac702aad355fc344bfce5ce8da627a97ec0145e4fbfc53d893</originalsourceid><addsrcrecordid>eNp10MFKxDAQBuAgCq6r-AoBDx6ka9Km2-Yooq4gCKKwt5KmUzdLN6mTFOnNqzef0Scx63r1NDD_NzMwhJxyNuOMpZeAszLNyz0y4UzKhHOx3CcTls2zRLJieUiOvF8zFjNeTMjnwgAq1CujVdeN1AccdBgQGupNZ7Szl6-o-hVYoNpteudNAE_fY6-Pph6psQEwOgs6xI5WWDtLrbIuDDXQGpXVqzjSOqSdCSszbL4_vkw0tQpxdKSRNuCPyUGrOg8nf3VKXm5vnq8XycPj3f311UOi01KWSauF5E0qc5blrGyULliqVJPleaszIepWQ64hBvO0ULIAzbjIQbQxyLOmlNmUnO329ujeBvChWrsBbTxZpQUThRRClFGd75RG5z1CW_VoNgrHirNq--cKsNr-OcqLnXw3HYz_serm6Vf_AKnyg2U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2704794448</pqid></control><display><type>article</type><title>Hierarchically structured silicon/graphene composites wrapped by interconnected carbon nanotube branches for lithium‐ion battery anodes</title><source>Access via Wiley Online Library</source><creator>Lee, Sang Joon ; Joe, Yun Sang ; Yeon, Jeong Seok ; Min, Dong Hyun ; Shin, Kang Ho ; Baek, Sang Ha ; Xiong, Peixun ; Nakhanivej, Puritut ; Park, Ho Seok</creator><creatorcontrib>Lee, Sang Joon ; Joe, Yun Sang ; Yeon, Jeong Seok ; Min, Dong Hyun ; Shin, Kang Ho ; Baek, Sang Ha ; Xiong, Peixun ; Nakhanivej, Puritut ; Park, Ho Seok</creatorcontrib><description>Summary Despite a high theoretical capacity, relatively low potential, and natural abundance, the practical application of Si anode is limited by a drastic volume change and low electrical conductivity. To resolve these issues, herein, we demonstrated a hierarchically structured composite, consisting of Si microparticle/reduced graphene oxide (rGO) wrapped by interconnected carbon nanotube (CNT) branches (CNT@NiNP@Si/rGO), for lithium‐ion battery (LIB) anodes. Chemical vapor deposition is used to in situ grow CNT branches integrated onto the rGO and to encapsulate Ni nanoparticles (NiNP) at the tip of CNTs for the construction of three‐dimensional (3D) hierarchical complex structures. Moreover, ultrasonication is required for achieving uniform dispersion of NiNP catalyst for the growth of well‐defined CNT branches. The resulting CNT@NiNP@Si/rGO composites deliver the high rate capacity of 806 mAh g−1 at 8,400 mA g−1 and high capacity of 973 mAh g−1 after 250 cycles. Consequently, these improved performances of CNT@NiNP@Si/rGO composites are attributed to the effect of stress delocalization and facilitated charge transfer of Si arising from the hierarchical structure and covalent SiC bonds. The three‐dimensional hierarchical CNT@NiNP@Si/rGO composite structure is constructed using chemical vapor deposition to in situ grow CNT branches from well‐dispersed NiNP catalyst to encapsulate Si/rGO. Thus, CNT@NiNP@Si/rGO composite greatly improved cyclic stability and rate capability of the pristine Si microparticles owing to the effect of stress delocalization and facilitated charge transfer of Si arising from the hierarchical structure and covalent SiC bonds.</description><identifier>ISSN: 0363-907X</identifier><identifier>EISSN: 1099-114X</identifier><identifier>DOI: 10.1002/er.8258</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Inc</publisher><subject>Anodes ; Capacity ; Carbon ; carbon nanotube branches ; Carbon nanotubes ; Catalysts ; Charge transfer ; Chemical vapor deposition ; composite ; Composite materials ; Electrical conductivity ; Electrical resistivity ; Graphene ; hierarchical structure ; Lithium ; Lithium-ion batteries ; Microparticles ; Nanoparticles ; Silicon ; silicon anode ; Structural hierarchy</subject><ispartof>International journal of energy research, 2022-09, Vol.46 (11), p.15627-15638</ispartof><rights>2022 John Wiley &amp; Sons Ltd.</rights><rights>2022 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2898-fc491d29503508dac702aad355fc344bfce5ce8da627a97ec0145e4fbfc53d893</citedby><cites>FETCH-LOGICAL-c2898-fc491d29503508dac702aad355fc344bfce5ce8da627a97ec0145e4fbfc53d893</cites><orcidid>0000-0003-4052-9534 ; 0000-0002-4424-4037</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fer.8258$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fer.8258$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Lee, Sang Joon</creatorcontrib><creatorcontrib>Joe, Yun Sang</creatorcontrib><creatorcontrib>Yeon, Jeong Seok</creatorcontrib><creatorcontrib>Min, Dong Hyun</creatorcontrib><creatorcontrib>Shin, Kang Ho</creatorcontrib><creatorcontrib>Baek, Sang Ha</creatorcontrib><creatorcontrib>Xiong, Peixun</creatorcontrib><creatorcontrib>Nakhanivej, Puritut</creatorcontrib><creatorcontrib>Park, Ho Seok</creatorcontrib><title>Hierarchically structured silicon/graphene composites wrapped by interconnected carbon nanotube branches for lithium‐ion battery anodes</title><title>International journal of energy research</title><description>Summary Despite a high theoretical capacity, relatively low potential, and natural abundance, the practical application of Si anode is limited by a drastic volume change and low electrical conductivity. To resolve these issues, herein, we demonstrated a hierarchically structured composite, consisting of Si microparticle/reduced graphene oxide (rGO) wrapped by interconnected carbon nanotube (CNT) branches (CNT@NiNP@Si/rGO), for lithium‐ion battery (LIB) anodes. Chemical vapor deposition is used to in situ grow CNT branches integrated onto the rGO and to encapsulate Ni nanoparticles (NiNP) at the tip of CNTs for the construction of three‐dimensional (3D) hierarchical complex structures. Moreover, ultrasonication is required for achieving uniform dispersion of NiNP catalyst for the growth of well‐defined CNT branches. The resulting CNT@NiNP@Si/rGO composites deliver the high rate capacity of 806 mAh g−1 at 8,400 mA g−1 and high capacity of 973 mAh g−1 after 250 cycles. Consequently, these improved performances of CNT@NiNP@Si/rGO composites are attributed to the effect of stress delocalization and facilitated charge transfer of Si arising from the hierarchical structure and covalent SiC bonds. The three‐dimensional hierarchical CNT@NiNP@Si/rGO composite structure is constructed using chemical vapor deposition to in situ grow CNT branches from well‐dispersed NiNP catalyst to encapsulate Si/rGO. Thus, CNT@NiNP@Si/rGO composite greatly improved cyclic stability and rate capability of the pristine Si microparticles owing to the effect of stress delocalization and facilitated charge transfer of Si arising from the hierarchical structure and covalent SiC bonds.</description><subject>Anodes</subject><subject>Capacity</subject><subject>Carbon</subject><subject>carbon nanotube branches</subject><subject>Carbon nanotubes</subject><subject>Catalysts</subject><subject>Charge transfer</subject><subject>Chemical vapor deposition</subject><subject>composite</subject><subject>Composite materials</subject><subject>Electrical conductivity</subject><subject>Electrical resistivity</subject><subject>Graphene</subject><subject>hierarchical structure</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Microparticles</subject><subject>Nanoparticles</subject><subject>Silicon</subject><subject>silicon anode</subject><subject>Structural hierarchy</subject><issn>0363-907X</issn><issn>1099-114X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp10MFKxDAQBuAgCq6r-AoBDx6ka9Km2-Yooq4gCKKwt5KmUzdLN6mTFOnNqzef0Scx63r1NDD_NzMwhJxyNuOMpZeAszLNyz0y4UzKhHOx3CcTls2zRLJieUiOvF8zFjNeTMjnwgAq1CujVdeN1AccdBgQGupNZ7Szl6-o-hVYoNpteudNAE_fY6-Pph6psQEwOgs6xI5WWDtLrbIuDDXQGpXVqzjSOqSdCSszbL4_vkw0tQpxdKSRNuCPyUGrOg8nf3VKXm5vnq8XycPj3f311UOi01KWSauF5E0qc5blrGyULliqVJPleaszIepWQ64hBvO0ULIAzbjIQbQxyLOmlNmUnO329ujeBvChWrsBbTxZpQUThRRClFGd75RG5z1CW_VoNgrHirNq--cKsNr-OcqLnXw3HYz_serm6Vf_AKnyg2U</recordid><startdate>202209</startdate><enddate>202209</enddate><creator>Lee, Sang Joon</creator><creator>Joe, Yun Sang</creator><creator>Yeon, Jeong Seok</creator><creator>Min, Dong Hyun</creator><creator>Shin, Kang Ho</creator><creator>Baek, Sang Ha</creator><creator>Xiong, Peixun</creator><creator>Nakhanivej, Puritut</creator><creator>Park, Ho Seok</creator><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7TN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-4052-9534</orcidid><orcidid>https://orcid.org/0000-0002-4424-4037</orcidid></search><sort><creationdate>202209</creationdate><title>Hierarchically structured silicon/graphene composites wrapped by interconnected carbon nanotube branches for lithium‐ion battery anodes</title><author>Lee, Sang Joon ; Joe, Yun Sang ; Yeon, Jeong Seok ; Min, Dong Hyun ; Shin, Kang Ho ; Baek, Sang Ha ; Xiong, Peixun ; Nakhanivej, Puritut ; Park, Ho Seok</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2898-fc491d29503508dac702aad355fc344bfce5ce8da627a97ec0145e4fbfc53d893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anodes</topic><topic>Capacity</topic><topic>Carbon</topic><topic>carbon nanotube branches</topic><topic>Carbon nanotubes</topic><topic>Catalysts</topic><topic>Charge transfer</topic><topic>Chemical vapor deposition</topic><topic>composite</topic><topic>Composite materials</topic><topic>Electrical conductivity</topic><topic>Electrical resistivity</topic><topic>Graphene</topic><topic>hierarchical structure</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Microparticles</topic><topic>Nanoparticles</topic><topic>Silicon</topic><topic>silicon anode</topic><topic>Structural hierarchy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Sang Joon</creatorcontrib><creatorcontrib>Joe, Yun Sang</creatorcontrib><creatorcontrib>Yeon, Jeong Seok</creatorcontrib><creatorcontrib>Min, Dong Hyun</creatorcontrib><creatorcontrib>Shin, Kang Ho</creatorcontrib><creatorcontrib>Baek, Sang Ha</creatorcontrib><creatorcontrib>Xiong, Peixun</creatorcontrib><creatorcontrib>Nakhanivej, Puritut</creatorcontrib><creatorcontrib>Park, Ho Seok</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>International journal of energy research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Sang Joon</au><au>Joe, Yun Sang</au><au>Yeon, Jeong Seok</au><au>Min, Dong Hyun</au><au>Shin, Kang Ho</au><au>Baek, Sang Ha</au><au>Xiong, Peixun</au><au>Nakhanivej, Puritut</au><au>Park, Ho Seok</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hierarchically structured silicon/graphene composites wrapped by interconnected carbon nanotube branches for lithium‐ion battery anodes</atitle><jtitle>International journal of energy research</jtitle><date>2022-09</date><risdate>2022</risdate><volume>46</volume><issue>11</issue><spage>15627</spage><epage>15638</epage><pages>15627-15638</pages><issn>0363-907X</issn><eissn>1099-114X</eissn><abstract>Summary Despite a high theoretical capacity, relatively low potential, and natural abundance, the practical application of Si anode is limited by a drastic volume change and low electrical conductivity. To resolve these issues, herein, we demonstrated a hierarchically structured composite, consisting of Si microparticle/reduced graphene oxide (rGO) wrapped by interconnected carbon nanotube (CNT) branches (CNT@NiNP@Si/rGO), for lithium‐ion battery (LIB) anodes. Chemical vapor deposition is used to in situ grow CNT branches integrated onto the rGO and to encapsulate Ni nanoparticles (NiNP) at the tip of CNTs for the construction of three‐dimensional (3D) hierarchical complex structures. Moreover, ultrasonication is required for achieving uniform dispersion of NiNP catalyst for the growth of well‐defined CNT branches. The resulting CNT@NiNP@Si/rGO composites deliver the high rate capacity of 806 mAh g−1 at 8,400 mA g−1 and high capacity of 973 mAh g−1 after 250 cycles. Consequently, these improved performances of CNT@NiNP@Si/rGO composites are attributed to the effect of stress delocalization and facilitated charge transfer of Si arising from the hierarchical structure and covalent SiC bonds. The three‐dimensional hierarchical CNT@NiNP@Si/rGO composite structure is constructed using chemical vapor deposition to in situ grow CNT branches from well‐dispersed NiNP catalyst to encapsulate Si/rGO. Thus, CNT@NiNP@Si/rGO composite greatly improved cyclic stability and rate capability of the pristine Si microparticles owing to the effect of stress delocalization and facilitated charge transfer of Si arising from the hierarchical structure and covalent SiC bonds.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/er.8258</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4052-9534</orcidid><orcidid>https://orcid.org/0000-0002-4424-4037</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0363-907X
ispartof International journal of energy research, 2022-09, Vol.46 (11), p.15627-15638
issn 0363-907X
1099-114X
language eng
recordid cdi_proquest_journals_2704794448
source Access via Wiley Online Library
subjects Anodes
Capacity
Carbon
carbon nanotube branches
Carbon nanotubes
Catalysts
Charge transfer
Chemical vapor deposition
composite
Composite materials
Electrical conductivity
Electrical resistivity
Graphene
hierarchical structure
Lithium
Lithium-ion batteries
Microparticles
Nanoparticles
Silicon
silicon anode
Structural hierarchy
title Hierarchically structured silicon/graphene composites wrapped by interconnected carbon nanotube branches for lithium‐ion battery anodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T01%3A22%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hierarchically%20structured%20silicon/graphene%20composites%20wrapped%20by%20interconnected%20carbon%20nanotube%20branches%20for%20lithium%E2%80%90ion%20battery%20anodes&rft.jtitle=International%20journal%20of%20energy%20research&rft.au=Lee,%20Sang%20Joon&rft.date=2022-09&rft.volume=46&rft.issue=11&rft.spage=15627&rft.epage=15638&rft.pages=15627-15638&rft.issn=0363-907X&rft.eissn=1099-114X&rft_id=info:doi/10.1002/er.8258&rft_dat=%3Cproquest_cross%3E2704794448%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2704794448&rft_id=info:pmid/&rfr_iscdi=true