Hierarchically structured silicon/graphene composites wrapped by interconnected carbon nanotube branches for lithium‐ion battery anodes
Summary Despite a high theoretical capacity, relatively low potential, and natural abundance, the practical application of Si anode is limited by a drastic volume change and low electrical conductivity. To resolve these issues, herein, we demonstrated a hierarchically structured composite, consistin...
Gespeichert in:
Veröffentlicht in: | International journal of energy research 2022-09, Vol.46 (11), p.15627-15638 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15638 |
---|---|
container_issue | 11 |
container_start_page | 15627 |
container_title | International journal of energy research |
container_volume | 46 |
creator | Lee, Sang Joon Joe, Yun Sang Yeon, Jeong Seok Min, Dong Hyun Shin, Kang Ho Baek, Sang Ha Xiong, Peixun Nakhanivej, Puritut Park, Ho Seok |
description | Summary
Despite a high theoretical capacity, relatively low potential, and natural abundance, the practical application of Si anode is limited by a drastic volume change and low electrical conductivity. To resolve these issues, herein, we demonstrated a hierarchically structured composite, consisting of Si microparticle/reduced graphene oxide (rGO) wrapped by interconnected carbon nanotube (CNT) branches (CNT@NiNP@Si/rGO), for lithium‐ion battery (LIB) anodes. Chemical vapor deposition is used to in situ grow CNT branches integrated onto the rGO and to encapsulate Ni nanoparticles (NiNP) at the tip of CNTs for the construction of three‐dimensional (3D) hierarchical complex structures. Moreover, ultrasonication is required for achieving uniform dispersion of NiNP catalyst for the growth of well‐defined CNT branches. The resulting CNT@NiNP@Si/rGO composites deliver the high rate capacity of 806 mAh g−1 at 8,400 mA g−1 and high capacity of 973 mAh g−1 after 250 cycles. Consequently, these improved performances of CNT@NiNP@Si/rGO composites are attributed to the effect of stress delocalization and facilitated charge transfer of Si arising from the hierarchical structure and covalent SiC bonds.
The three‐dimensional hierarchical CNT@NiNP@Si/rGO composite structure is constructed using chemical vapor deposition to in situ grow CNT branches from well‐dispersed NiNP catalyst to encapsulate Si/rGO. Thus, CNT@NiNP@Si/rGO composite greatly improved cyclic stability and rate capability of the pristine Si microparticles owing to the effect of stress delocalization and facilitated charge transfer of Si arising from the hierarchical structure and covalent SiC bonds. |
doi_str_mv | 10.1002/er.8258 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2704794448</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2704794448</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2898-fc491d29503508dac702aad355fc344bfce5ce8da627a97ec0145e4fbfc53d893</originalsourceid><addsrcrecordid>eNp10MFKxDAQBuAgCq6r-AoBDx6ka9Km2-Yooq4gCKKwt5KmUzdLN6mTFOnNqzef0Scx63r1NDD_NzMwhJxyNuOMpZeAszLNyz0y4UzKhHOx3CcTls2zRLJieUiOvF8zFjNeTMjnwgAq1CujVdeN1AccdBgQGupNZ7Szl6-o-hVYoNpteudNAE_fY6-Pph6psQEwOgs6xI5WWDtLrbIuDDXQGpXVqzjSOqSdCSszbL4_vkw0tQpxdKSRNuCPyUGrOg8nf3VKXm5vnq8XycPj3f311UOi01KWSauF5E0qc5blrGyULliqVJPleaszIepWQ64hBvO0ULIAzbjIQbQxyLOmlNmUnO329ujeBvChWrsBbTxZpQUThRRClFGd75RG5z1CW_VoNgrHirNq--cKsNr-OcqLnXw3HYz_serm6Vf_AKnyg2U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2704794448</pqid></control><display><type>article</type><title>Hierarchically structured silicon/graphene composites wrapped by interconnected carbon nanotube branches for lithium‐ion battery anodes</title><source>Access via Wiley Online Library</source><creator>Lee, Sang Joon ; Joe, Yun Sang ; Yeon, Jeong Seok ; Min, Dong Hyun ; Shin, Kang Ho ; Baek, Sang Ha ; Xiong, Peixun ; Nakhanivej, Puritut ; Park, Ho Seok</creator><creatorcontrib>Lee, Sang Joon ; Joe, Yun Sang ; Yeon, Jeong Seok ; Min, Dong Hyun ; Shin, Kang Ho ; Baek, Sang Ha ; Xiong, Peixun ; Nakhanivej, Puritut ; Park, Ho Seok</creatorcontrib><description>Summary
Despite a high theoretical capacity, relatively low potential, and natural abundance, the practical application of Si anode is limited by a drastic volume change and low electrical conductivity. To resolve these issues, herein, we demonstrated a hierarchically structured composite, consisting of Si microparticle/reduced graphene oxide (rGO) wrapped by interconnected carbon nanotube (CNT) branches (CNT@NiNP@Si/rGO), for lithium‐ion battery (LIB) anodes. Chemical vapor deposition is used to in situ grow CNT branches integrated onto the rGO and to encapsulate Ni nanoparticles (NiNP) at the tip of CNTs for the construction of three‐dimensional (3D) hierarchical complex structures. Moreover, ultrasonication is required for achieving uniform dispersion of NiNP catalyst for the growth of well‐defined CNT branches. The resulting CNT@NiNP@Si/rGO composites deliver the high rate capacity of 806 mAh g−1 at 8,400 mA g−1 and high capacity of 973 mAh g−1 after 250 cycles. Consequently, these improved performances of CNT@NiNP@Si/rGO composites are attributed to the effect of stress delocalization and facilitated charge transfer of Si arising from the hierarchical structure and covalent SiC bonds.
The three‐dimensional hierarchical CNT@NiNP@Si/rGO composite structure is constructed using chemical vapor deposition to in situ grow CNT branches from well‐dispersed NiNP catalyst to encapsulate Si/rGO. Thus, CNT@NiNP@Si/rGO composite greatly improved cyclic stability and rate capability of the pristine Si microparticles owing to the effect of stress delocalization and facilitated charge transfer of Si arising from the hierarchical structure and covalent SiC bonds.</description><identifier>ISSN: 0363-907X</identifier><identifier>EISSN: 1099-114X</identifier><identifier>DOI: 10.1002/er.8258</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Inc</publisher><subject>Anodes ; Capacity ; Carbon ; carbon nanotube branches ; Carbon nanotubes ; Catalysts ; Charge transfer ; Chemical vapor deposition ; composite ; Composite materials ; Electrical conductivity ; Electrical resistivity ; Graphene ; hierarchical structure ; Lithium ; Lithium-ion batteries ; Microparticles ; Nanoparticles ; Silicon ; silicon anode ; Structural hierarchy</subject><ispartof>International journal of energy research, 2022-09, Vol.46 (11), p.15627-15638</ispartof><rights>2022 John Wiley & Sons Ltd.</rights><rights>2022 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2898-fc491d29503508dac702aad355fc344bfce5ce8da627a97ec0145e4fbfc53d893</citedby><cites>FETCH-LOGICAL-c2898-fc491d29503508dac702aad355fc344bfce5ce8da627a97ec0145e4fbfc53d893</cites><orcidid>0000-0003-4052-9534 ; 0000-0002-4424-4037</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fer.8258$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fer.8258$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Lee, Sang Joon</creatorcontrib><creatorcontrib>Joe, Yun Sang</creatorcontrib><creatorcontrib>Yeon, Jeong Seok</creatorcontrib><creatorcontrib>Min, Dong Hyun</creatorcontrib><creatorcontrib>Shin, Kang Ho</creatorcontrib><creatorcontrib>Baek, Sang Ha</creatorcontrib><creatorcontrib>Xiong, Peixun</creatorcontrib><creatorcontrib>Nakhanivej, Puritut</creatorcontrib><creatorcontrib>Park, Ho Seok</creatorcontrib><title>Hierarchically structured silicon/graphene composites wrapped by interconnected carbon nanotube branches for lithium‐ion battery anodes</title><title>International journal of energy research</title><description>Summary
Despite a high theoretical capacity, relatively low potential, and natural abundance, the practical application of Si anode is limited by a drastic volume change and low electrical conductivity. To resolve these issues, herein, we demonstrated a hierarchically structured composite, consisting of Si microparticle/reduced graphene oxide (rGO) wrapped by interconnected carbon nanotube (CNT) branches (CNT@NiNP@Si/rGO), for lithium‐ion battery (LIB) anodes. Chemical vapor deposition is used to in situ grow CNT branches integrated onto the rGO and to encapsulate Ni nanoparticles (NiNP) at the tip of CNTs for the construction of three‐dimensional (3D) hierarchical complex structures. Moreover, ultrasonication is required for achieving uniform dispersion of NiNP catalyst for the growth of well‐defined CNT branches. The resulting CNT@NiNP@Si/rGO composites deliver the high rate capacity of 806 mAh g−1 at 8,400 mA g−1 and high capacity of 973 mAh g−1 after 250 cycles. Consequently, these improved performances of CNT@NiNP@Si/rGO composites are attributed to the effect of stress delocalization and facilitated charge transfer of Si arising from the hierarchical structure and covalent SiC bonds.
The three‐dimensional hierarchical CNT@NiNP@Si/rGO composite structure is constructed using chemical vapor deposition to in situ grow CNT branches from well‐dispersed NiNP catalyst to encapsulate Si/rGO. Thus, CNT@NiNP@Si/rGO composite greatly improved cyclic stability and rate capability of the pristine Si microparticles owing to the effect of stress delocalization and facilitated charge transfer of Si arising from the hierarchical structure and covalent SiC bonds.</description><subject>Anodes</subject><subject>Capacity</subject><subject>Carbon</subject><subject>carbon nanotube branches</subject><subject>Carbon nanotubes</subject><subject>Catalysts</subject><subject>Charge transfer</subject><subject>Chemical vapor deposition</subject><subject>composite</subject><subject>Composite materials</subject><subject>Electrical conductivity</subject><subject>Electrical resistivity</subject><subject>Graphene</subject><subject>hierarchical structure</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Microparticles</subject><subject>Nanoparticles</subject><subject>Silicon</subject><subject>silicon anode</subject><subject>Structural hierarchy</subject><issn>0363-907X</issn><issn>1099-114X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp10MFKxDAQBuAgCq6r-AoBDx6ka9Km2-Yooq4gCKKwt5KmUzdLN6mTFOnNqzef0Scx63r1NDD_NzMwhJxyNuOMpZeAszLNyz0y4UzKhHOx3CcTls2zRLJieUiOvF8zFjNeTMjnwgAq1CujVdeN1AccdBgQGupNZ7Szl6-o-hVYoNpteudNAE_fY6-Pph6psQEwOgs6xI5WWDtLrbIuDDXQGpXVqzjSOqSdCSszbL4_vkw0tQpxdKSRNuCPyUGrOg8nf3VKXm5vnq8XycPj3f311UOi01KWSauF5E0qc5blrGyULliqVJPleaszIepWQ64hBvO0ULIAzbjIQbQxyLOmlNmUnO329ujeBvChWrsBbTxZpQUThRRClFGd75RG5z1CW_VoNgrHirNq--cKsNr-OcqLnXw3HYz_serm6Vf_AKnyg2U</recordid><startdate>202209</startdate><enddate>202209</enddate><creator>Lee, Sang Joon</creator><creator>Joe, Yun Sang</creator><creator>Yeon, Jeong Seok</creator><creator>Min, Dong Hyun</creator><creator>Shin, Kang Ho</creator><creator>Baek, Sang Ha</creator><creator>Xiong, Peixun</creator><creator>Nakhanivej, Puritut</creator><creator>Park, Ho Seok</creator><general>John Wiley & Sons, Inc</general><general>Hindawi Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7TN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-4052-9534</orcidid><orcidid>https://orcid.org/0000-0002-4424-4037</orcidid></search><sort><creationdate>202209</creationdate><title>Hierarchically structured silicon/graphene composites wrapped by interconnected carbon nanotube branches for lithium‐ion battery anodes</title><author>Lee, Sang Joon ; Joe, Yun Sang ; Yeon, Jeong Seok ; Min, Dong Hyun ; Shin, Kang Ho ; Baek, Sang Ha ; Xiong, Peixun ; Nakhanivej, Puritut ; Park, Ho Seok</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2898-fc491d29503508dac702aad355fc344bfce5ce8da627a97ec0145e4fbfc53d893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anodes</topic><topic>Capacity</topic><topic>Carbon</topic><topic>carbon nanotube branches</topic><topic>Carbon nanotubes</topic><topic>Catalysts</topic><topic>Charge transfer</topic><topic>Chemical vapor deposition</topic><topic>composite</topic><topic>Composite materials</topic><topic>Electrical conductivity</topic><topic>Electrical resistivity</topic><topic>Graphene</topic><topic>hierarchical structure</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Microparticles</topic><topic>Nanoparticles</topic><topic>Silicon</topic><topic>silicon anode</topic><topic>Structural hierarchy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Sang Joon</creatorcontrib><creatorcontrib>Joe, Yun Sang</creatorcontrib><creatorcontrib>Yeon, Jeong Seok</creatorcontrib><creatorcontrib>Min, Dong Hyun</creatorcontrib><creatorcontrib>Shin, Kang Ho</creatorcontrib><creatorcontrib>Baek, Sang Ha</creatorcontrib><creatorcontrib>Xiong, Peixun</creatorcontrib><creatorcontrib>Nakhanivej, Puritut</creatorcontrib><creatorcontrib>Park, Ho Seok</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>International journal of energy research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Sang Joon</au><au>Joe, Yun Sang</au><au>Yeon, Jeong Seok</au><au>Min, Dong Hyun</au><au>Shin, Kang Ho</au><au>Baek, Sang Ha</au><au>Xiong, Peixun</au><au>Nakhanivej, Puritut</au><au>Park, Ho Seok</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hierarchically structured silicon/graphene composites wrapped by interconnected carbon nanotube branches for lithium‐ion battery anodes</atitle><jtitle>International journal of energy research</jtitle><date>2022-09</date><risdate>2022</risdate><volume>46</volume><issue>11</issue><spage>15627</spage><epage>15638</epage><pages>15627-15638</pages><issn>0363-907X</issn><eissn>1099-114X</eissn><abstract>Summary
Despite a high theoretical capacity, relatively low potential, and natural abundance, the practical application of Si anode is limited by a drastic volume change and low electrical conductivity. To resolve these issues, herein, we demonstrated a hierarchically structured composite, consisting of Si microparticle/reduced graphene oxide (rGO) wrapped by interconnected carbon nanotube (CNT) branches (CNT@NiNP@Si/rGO), for lithium‐ion battery (LIB) anodes. Chemical vapor deposition is used to in situ grow CNT branches integrated onto the rGO and to encapsulate Ni nanoparticles (NiNP) at the tip of CNTs for the construction of three‐dimensional (3D) hierarchical complex structures. Moreover, ultrasonication is required for achieving uniform dispersion of NiNP catalyst for the growth of well‐defined CNT branches. The resulting CNT@NiNP@Si/rGO composites deliver the high rate capacity of 806 mAh g−1 at 8,400 mA g−1 and high capacity of 973 mAh g−1 after 250 cycles. Consequently, these improved performances of CNT@NiNP@Si/rGO composites are attributed to the effect of stress delocalization and facilitated charge transfer of Si arising from the hierarchical structure and covalent SiC bonds.
The three‐dimensional hierarchical CNT@NiNP@Si/rGO composite structure is constructed using chemical vapor deposition to in situ grow CNT branches from well‐dispersed NiNP catalyst to encapsulate Si/rGO. Thus, CNT@NiNP@Si/rGO composite greatly improved cyclic stability and rate capability of the pristine Si microparticles owing to the effect of stress delocalization and facilitated charge transfer of Si arising from the hierarchical structure and covalent SiC bonds.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/er.8258</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4052-9534</orcidid><orcidid>https://orcid.org/0000-0002-4424-4037</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0363-907X |
ispartof | International journal of energy research, 2022-09, Vol.46 (11), p.15627-15638 |
issn | 0363-907X 1099-114X |
language | eng |
recordid | cdi_proquest_journals_2704794448 |
source | Access via Wiley Online Library |
subjects | Anodes Capacity Carbon carbon nanotube branches Carbon nanotubes Catalysts Charge transfer Chemical vapor deposition composite Composite materials Electrical conductivity Electrical resistivity Graphene hierarchical structure Lithium Lithium-ion batteries Microparticles Nanoparticles Silicon silicon anode Structural hierarchy |
title | Hierarchically structured silicon/graphene composites wrapped by interconnected carbon nanotube branches for lithium‐ion battery anodes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T01%3A22%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hierarchically%20structured%20silicon/graphene%20composites%20wrapped%20by%20interconnected%20carbon%20nanotube%20branches%20for%20lithium%E2%80%90ion%20battery%20anodes&rft.jtitle=International%20journal%20of%20energy%20research&rft.au=Lee,%20Sang%20Joon&rft.date=2022-09&rft.volume=46&rft.issue=11&rft.spage=15627&rft.epage=15638&rft.pages=15627-15638&rft.issn=0363-907X&rft.eissn=1099-114X&rft_id=info:doi/10.1002/er.8258&rft_dat=%3Cproquest_cross%3E2704794448%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2704794448&rft_id=info:pmid/&rfr_iscdi=true |