“Water‐in‐Salt” Nonalkaline Gel Polymer Electrolytes Enable Flexible Zinc‐Air Batteries with Ultra‐Long Operating Time
Solid‐state zinc‐air batteries (ZABs) are regarded as one of the most promising flexible energy storage systems for wearable electronic devices beyond lithium‐ion batteries. Unfortunately, continuous water loss of electrolyte and zinc electrode corrosion severely limit service life of ZABs. Herein,...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2022-08, Vol.32 (34), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 34 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 32 |
creator | Zhang, Yanan Wu, Dingsheng Huang, Fenglin Cai, Yibing Li, Yonggui Ke, Huizhen Lv, Pengfei Wei, Qufu |
description | Solid‐state zinc‐air batteries (ZABs) are regarded as one of the most promising flexible energy storage systems for wearable electronic devices beyond lithium‐ion batteries. Unfortunately, continuous water loss of electrolyte and zinc electrode corrosion severely limit service life of ZABs. Herein, a “water‐in‐salt” (WIS) nonalkaline gel polymer electrolyte with a double network (polyacrylic acid and cellulose nanofibers) is prepared in one step via UV light‐initiated free radical polymerization. The WIS electrolyte is realized by coordination interactions between zinc trifluoromethylsulfonate and acetamide and exhibits extraordinary thermodynamic stability. Benefiting from strong interactions between water and other components, the electrolyte can capture water from ambient air and realize dynamic balance of adsorption and desorption. Therefore, flexible ZAB achieves an ultra‐long cycle time of 1300 h. In addition, the gel polymer electrolyte possesses excellent adhesion property and can be tightly bonded to the electrodes without fixation measures. The fabricated sandwich‐ and cable‐type batteries adapt to complex deformations without sacrificing electrochemical performance, which demonstrates enormous potential for practical wearable applications.
A “water‐in‐salt” nonalkaline gel polymer electrolyte is obtained via coordination interactions between zinc trifluoromethylsulfonate and acetamide. Extraordinary thermodynamic stability drives the electrolyte to capture water from ambient air and realize a dynamic balance between adsorption and desorption. The prepared flexible zinc‐air battery exhibits an ultra‐long cycle time of 1300 h. |
doi_str_mv | 10.1002/adfm.202203204 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2704166807</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2704166807</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3174-9b59da23c58f24e84ec4a84262fead63fe58d8a0e47f0d95667d106bb6a362f73</originalsourceid><addsrcrecordid>eNqFkEFOwzAQRSMEEqWwZW2JdYrtOE6yLKUtSIUi0QrEJnKSCbg4SXFcle4qTsAB4HI9CY6KypLNzLf8_pfmO84pwR2CMT0XWV50KKYUexSzPadFOOGuh2m4v9Pk8dA5qusZxiQIPNZyPjbrrwdhQG_Wn7K0414os1l_o9uqFOpVKFkCGoJCd5VaFaBRX0FqtH0YqFG_FIkCNFDwLhvxJMvUZnSlRhfC2FRpoaU0L2iqjBb2a1SVz2g8By2MtGoiCzh2DnKhajj53W1nOuhPelfuaDy87nVHbuqRgLlR4keZoF7qhzllEDJImQgZ5TQHkXEvBz_MQoGBBTnOIp_zICOYJwkXnmUCr-2cbXPnunpbQG3iWbXQ9so6pgFmhPMQN1RnS6W6qmsNeTzXshB6FRMcNz3HTc_xrmdriLaGpVSw-oeOu5eDmz_vD8yIiJY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2704166807</pqid></control><display><type>article</type><title>“Water‐in‐Salt” Nonalkaline Gel Polymer Electrolytes Enable Flexible Zinc‐Air Batteries with Ultra‐Long Operating Time</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Zhang, Yanan ; Wu, Dingsheng ; Huang, Fenglin ; Cai, Yibing ; Li, Yonggui ; Ke, Huizhen ; Lv, Pengfei ; Wei, Qufu</creator><creatorcontrib>Zhang, Yanan ; Wu, Dingsheng ; Huang, Fenglin ; Cai, Yibing ; Li, Yonggui ; Ke, Huizhen ; Lv, Pengfei ; Wei, Qufu</creatorcontrib><description>Solid‐state zinc‐air batteries (ZABs) are regarded as one of the most promising flexible energy storage systems for wearable electronic devices beyond lithium‐ion batteries. Unfortunately, continuous water loss of electrolyte and zinc electrode corrosion severely limit service life of ZABs. Herein, a “water‐in‐salt” (WIS) nonalkaline gel polymer electrolyte with a double network (polyacrylic acid and cellulose nanofibers) is prepared in one step via UV light‐initiated free radical polymerization. The WIS electrolyte is realized by coordination interactions between zinc trifluoromethylsulfonate and acetamide and exhibits extraordinary thermodynamic stability. Benefiting from strong interactions between water and other components, the electrolyte can capture water from ambient air and realize dynamic balance of adsorption and desorption. Therefore, flexible ZAB achieves an ultra‐long cycle time of 1300 h. In addition, the gel polymer electrolyte possesses excellent adhesion property and can be tightly bonded to the electrodes without fixation measures. The fabricated sandwich‐ and cable‐type batteries adapt to complex deformations without sacrificing electrochemical performance, which demonstrates enormous potential for practical wearable applications.
A “water‐in‐salt” nonalkaline gel polymer electrolyte is obtained via coordination interactions between zinc trifluoromethylsulfonate and acetamide. Extraordinary thermodynamic stability drives the electrolyte to capture water from ambient air and realize a dynamic balance between adsorption and desorption. The prepared flexible zinc‐air battery exhibits an ultra‐long cycle time of 1300 h.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202203204</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Addition polymerization ; Bonding strength ; Cellulose fibers ; Cycle time ; Electrochemical analysis ; Electrodes ; Electrolytes ; Electronic devices ; Energy storage ; Free radical polymerization ; Free radicals ; gel polymer electrolytes ; Lithium-ion batteries ; Materials science ; Metal air batteries ; Nanofibers ; nonalkaline electrolytes ; Polyacrylic acid ; Polymers ; Service life ; Storage batteries ; Storage systems ; Ultraviolet radiation ; Water loss ; water‐in‐salt ; Wearable technology ; Zinc-oxygen batteries ; zinc‐air batteries</subject><ispartof>Advanced functional materials, 2022-08, Vol.32 (34), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3174-9b59da23c58f24e84ec4a84262fead63fe58d8a0e47f0d95667d106bb6a362f73</citedby><cites>FETCH-LOGICAL-c3174-9b59da23c58f24e84ec4a84262fead63fe58d8a0e47f0d95667d106bb6a362f73</cites><orcidid>0000-0003-2143-9939</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202203204$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202203204$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Zhang, Yanan</creatorcontrib><creatorcontrib>Wu, Dingsheng</creatorcontrib><creatorcontrib>Huang, Fenglin</creatorcontrib><creatorcontrib>Cai, Yibing</creatorcontrib><creatorcontrib>Li, Yonggui</creatorcontrib><creatorcontrib>Ke, Huizhen</creatorcontrib><creatorcontrib>Lv, Pengfei</creatorcontrib><creatorcontrib>Wei, Qufu</creatorcontrib><title>“Water‐in‐Salt” Nonalkaline Gel Polymer Electrolytes Enable Flexible Zinc‐Air Batteries with Ultra‐Long Operating Time</title><title>Advanced functional materials</title><description>Solid‐state zinc‐air batteries (ZABs) are regarded as one of the most promising flexible energy storage systems for wearable electronic devices beyond lithium‐ion batteries. Unfortunately, continuous water loss of electrolyte and zinc electrode corrosion severely limit service life of ZABs. Herein, a “water‐in‐salt” (WIS) nonalkaline gel polymer electrolyte with a double network (polyacrylic acid and cellulose nanofibers) is prepared in one step via UV light‐initiated free radical polymerization. The WIS electrolyte is realized by coordination interactions between zinc trifluoromethylsulfonate and acetamide and exhibits extraordinary thermodynamic stability. Benefiting from strong interactions between water and other components, the electrolyte can capture water from ambient air and realize dynamic balance of adsorption and desorption. Therefore, flexible ZAB achieves an ultra‐long cycle time of 1300 h. In addition, the gel polymer electrolyte possesses excellent adhesion property and can be tightly bonded to the electrodes without fixation measures. The fabricated sandwich‐ and cable‐type batteries adapt to complex deformations without sacrificing electrochemical performance, which demonstrates enormous potential for practical wearable applications.
A “water‐in‐salt” nonalkaline gel polymer electrolyte is obtained via coordination interactions between zinc trifluoromethylsulfonate and acetamide. Extraordinary thermodynamic stability drives the electrolyte to capture water from ambient air and realize a dynamic balance between adsorption and desorption. The prepared flexible zinc‐air battery exhibits an ultra‐long cycle time of 1300 h.</description><subject>Addition polymerization</subject><subject>Bonding strength</subject><subject>Cellulose fibers</subject><subject>Cycle time</subject><subject>Electrochemical analysis</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Electronic devices</subject><subject>Energy storage</subject><subject>Free radical polymerization</subject><subject>Free radicals</subject><subject>gel polymer electrolytes</subject><subject>Lithium-ion batteries</subject><subject>Materials science</subject><subject>Metal air batteries</subject><subject>Nanofibers</subject><subject>nonalkaline electrolytes</subject><subject>Polyacrylic acid</subject><subject>Polymers</subject><subject>Service life</subject><subject>Storage batteries</subject><subject>Storage systems</subject><subject>Ultraviolet radiation</subject><subject>Water loss</subject><subject>water‐in‐salt</subject><subject>Wearable technology</subject><subject>Zinc-oxygen batteries</subject><subject>zinc‐air batteries</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkEFOwzAQRSMEEqWwZW2JdYrtOE6yLKUtSIUi0QrEJnKSCbg4SXFcle4qTsAB4HI9CY6KypLNzLf8_pfmO84pwR2CMT0XWV50KKYUexSzPadFOOGuh2m4v9Pk8dA5qusZxiQIPNZyPjbrrwdhQG_Wn7K0414os1l_o9uqFOpVKFkCGoJCd5VaFaBRX0FqtH0YqFG_FIkCNFDwLhvxJMvUZnSlRhfC2FRpoaU0L2iqjBb2a1SVz2g8By2MtGoiCzh2DnKhajj53W1nOuhPelfuaDy87nVHbuqRgLlR4keZoF7qhzllEDJImQgZ5TQHkXEvBz_MQoGBBTnOIp_zICOYJwkXnmUCr-2cbXPnunpbQG3iWbXQ9so6pgFmhPMQN1RnS6W6qmsNeTzXshB6FRMcNz3HTc_xrmdriLaGpVSw-oeOu5eDmz_vD8yIiJY</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Zhang, Yanan</creator><creator>Wu, Dingsheng</creator><creator>Huang, Fenglin</creator><creator>Cai, Yibing</creator><creator>Li, Yonggui</creator><creator>Ke, Huizhen</creator><creator>Lv, Pengfei</creator><creator>Wei, Qufu</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2143-9939</orcidid></search><sort><creationdate>20220801</creationdate><title>“Water‐in‐Salt” Nonalkaline Gel Polymer Electrolytes Enable Flexible Zinc‐Air Batteries with Ultra‐Long Operating Time</title><author>Zhang, Yanan ; Wu, Dingsheng ; Huang, Fenglin ; Cai, Yibing ; Li, Yonggui ; Ke, Huizhen ; Lv, Pengfei ; Wei, Qufu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3174-9b59da23c58f24e84ec4a84262fead63fe58d8a0e47f0d95667d106bb6a362f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Addition polymerization</topic><topic>Bonding strength</topic><topic>Cellulose fibers</topic><topic>Cycle time</topic><topic>Electrochemical analysis</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Electronic devices</topic><topic>Energy storage</topic><topic>Free radical polymerization</topic><topic>Free radicals</topic><topic>gel polymer electrolytes</topic><topic>Lithium-ion batteries</topic><topic>Materials science</topic><topic>Metal air batteries</topic><topic>Nanofibers</topic><topic>nonalkaline electrolytes</topic><topic>Polyacrylic acid</topic><topic>Polymers</topic><topic>Service life</topic><topic>Storage batteries</topic><topic>Storage systems</topic><topic>Ultraviolet radiation</topic><topic>Water loss</topic><topic>water‐in‐salt</topic><topic>Wearable technology</topic><topic>Zinc-oxygen batteries</topic><topic>zinc‐air batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yanan</creatorcontrib><creatorcontrib>Wu, Dingsheng</creatorcontrib><creatorcontrib>Huang, Fenglin</creatorcontrib><creatorcontrib>Cai, Yibing</creatorcontrib><creatorcontrib>Li, Yonggui</creatorcontrib><creatorcontrib>Ke, Huizhen</creatorcontrib><creatorcontrib>Lv, Pengfei</creatorcontrib><creatorcontrib>Wei, Qufu</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yanan</au><au>Wu, Dingsheng</au><au>Huang, Fenglin</au><au>Cai, Yibing</au><au>Li, Yonggui</au><au>Ke, Huizhen</au><au>Lv, Pengfei</au><au>Wei, Qufu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>“Water‐in‐Salt” Nonalkaline Gel Polymer Electrolytes Enable Flexible Zinc‐Air Batteries with Ultra‐Long Operating Time</atitle><jtitle>Advanced functional materials</jtitle><date>2022-08-01</date><risdate>2022</risdate><volume>32</volume><issue>34</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Solid‐state zinc‐air batteries (ZABs) are regarded as one of the most promising flexible energy storage systems for wearable electronic devices beyond lithium‐ion batteries. Unfortunately, continuous water loss of electrolyte and zinc electrode corrosion severely limit service life of ZABs. Herein, a “water‐in‐salt” (WIS) nonalkaline gel polymer electrolyte with a double network (polyacrylic acid and cellulose nanofibers) is prepared in one step via UV light‐initiated free radical polymerization. The WIS electrolyte is realized by coordination interactions between zinc trifluoromethylsulfonate and acetamide and exhibits extraordinary thermodynamic stability. Benefiting from strong interactions between water and other components, the electrolyte can capture water from ambient air and realize dynamic balance of adsorption and desorption. Therefore, flexible ZAB achieves an ultra‐long cycle time of 1300 h. In addition, the gel polymer electrolyte possesses excellent adhesion property and can be tightly bonded to the electrodes without fixation measures. The fabricated sandwich‐ and cable‐type batteries adapt to complex deformations without sacrificing electrochemical performance, which demonstrates enormous potential for practical wearable applications.
A “water‐in‐salt” nonalkaline gel polymer electrolyte is obtained via coordination interactions between zinc trifluoromethylsulfonate and acetamide. Extraordinary thermodynamic stability drives the electrolyte to capture water from ambient air and realize a dynamic balance between adsorption and desorption. The prepared flexible zinc‐air battery exhibits an ultra‐long cycle time of 1300 h.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202203204</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2143-9939</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2022-08, Vol.32 (34), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2704166807 |
source | Wiley Online Library - AutoHoldings Journals |
subjects | Addition polymerization Bonding strength Cellulose fibers Cycle time Electrochemical analysis Electrodes Electrolytes Electronic devices Energy storage Free radical polymerization Free radicals gel polymer electrolytes Lithium-ion batteries Materials science Metal air batteries Nanofibers nonalkaline electrolytes Polyacrylic acid Polymers Service life Storage batteries Storage systems Ultraviolet radiation Water loss water‐in‐salt Wearable technology Zinc-oxygen batteries zinc‐air batteries |
title | “Water‐in‐Salt” Nonalkaline Gel Polymer Electrolytes Enable Flexible Zinc‐Air Batteries with Ultra‐Long Operating Time |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T05%3A03%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%E2%80%9CWater%E2%80%90in%E2%80%90Salt%E2%80%9D%20Nonalkaline%20Gel%20Polymer%20Electrolytes%20Enable%20Flexible%20Zinc%E2%80%90Air%20Batteries%20with%20Ultra%E2%80%90Long%20Operating%20Time&rft.jtitle=Advanced%20functional%20materials&rft.au=Zhang,%20Yanan&rft.date=2022-08-01&rft.volume=32&rft.issue=34&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202203204&rft_dat=%3Cproquest_cross%3E2704166807%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2704166807&rft_id=info:pmid/&rfr_iscdi=true |