Electrochemical Reactors for Continuous Decentralized H2O2 Production

The global utilization of H2O2 is currently around 4 million tons per year and is expected to continue to increase in the future. H2O2 is mainly produced by the anthraquinone process, which involves multiple steps in terms of alkylanthraquinone hydrogenation/oxidation in organic solvents and liquid–...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2022-08, Vol.61 (35), p.n/a
Hauptverfasser: Wen, Yichan, Zhang, Ting, Wang, Jianying, Pan, Zhelun, Wang, Tianfu, Yamashita, Hiromi, Qian, Xufang, Zhao, Yixin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 35
container_start_page
container_title Angewandte Chemie International Edition
container_volume 61
creator Wen, Yichan
Zhang, Ting
Wang, Jianying
Pan, Zhelun
Wang, Tianfu
Yamashita, Hiromi
Qian, Xufang
Zhao, Yixin
description The global utilization of H2O2 is currently around 4 million tons per year and is expected to continue to increase in the future. H2O2 is mainly produced by the anthraquinone process, which involves multiple steps in terms of alkylanthraquinone hydrogenation/oxidation in organic solvents and liquid–liquid extraction of H2O2. The energy‐intensive and environmentally unfriendly anthraquinone process does not meet the requirements of sustainable and low‐carbon development. The electrocatalytic two‐electron (2 e−) oxygen reduction reaction (ORR) driven by renewable energy (e.g. solar and wind power) offers a more economical, low‐carbon, and greener route to produce H2O2. However, continuous and decentralized H2O2 electrosynthesis still poses many challenges. This Minireview first summarizes the development of devices for H2O2 electrosynthesis, and then introduces each component, the assembly process, and some optimization strategies. Electrochemical reactors for continuous decentralized H2O2 production are described in this Minireview, with separate discussions of flow field plates, catalyst layers, gas diffusion layers, membranes, shapes, and electrolyte compartments. The key factors of these parts and the optimization strategies for assembling flow cells are summarized. Insights and perspectives on key components are given.
doi_str_mv 10.1002/anie.202205972
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2704165670</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2704165670</sourcerecordid><originalsourceid>FETCH-LOGICAL-j2992-56216f29ccd973f0fba7bde14868f8a541b3267653fd1d33b4ef86d5e91fd4643</originalsourceid><addsrcrecordid>eNo9kEtLw0AUhQdRsFa3rgOuU-f9WJYabaFYEV0Pk3nglDRTJwlSf70pla7uufBxDnwA3CM4QxDiR9NGP8MQY8iUwBdgghhGJRGCXI6ZElIKydA1uOm67chLCfkEVFXjbZ-T_fK7aE1TvHtj-5S7IqRcLFLbx3ZIQ1c8eevbPpsm_npXLPEGF285ucH2MbW34CqYpvN3_3cKPp-rj8WyXG9eVov5utxipXDJOEY8YGWtU4IEGGojaucRlVwGaRhFNcFccEaCQ46QmvoguWNeoeAop2QKHk69-5y-B9_1epuG3I6TGgtIEWdcwJFSJ-onNv6g9znuTD5oBPXRkz560mdPev66qs4f-QMabF4M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2704165670</pqid></control><display><type>article</type><title>Electrochemical Reactors for Continuous Decentralized H2O2 Production</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wen, Yichan ; Zhang, Ting ; Wang, Jianying ; Pan, Zhelun ; Wang, Tianfu ; Yamashita, Hiromi ; Qian, Xufang ; Zhao, Yixin</creator><creatorcontrib>Wen, Yichan ; Zhang, Ting ; Wang, Jianying ; Pan, Zhelun ; Wang, Tianfu ; Yamashita, Hiromi ; Qian, Xufang ; Zhao, Yixin</creatorcontrib><description>The global utilization of H2O2 is currently around 4 million tons per year and is expected to continue to increase in the future. H2O2 is mainly produced by the anthraquinone process, which involves multiple steps in terms of alkylanthraquinone hydrogenation/oxidation in organic solvents and liquid–liquid extraction of H2O2. The energy‐intensive and environmentally unfriendly anthraquinone process does not meet the requirements of sustainable and low‐carbon development. The electrocatalytic two‐electron (2 e−) oxygen reduction reaction (ORR) driven by renewable energy (e.g. solar and wind power) offers a more economical, low‐carbon, and greener route to produce H2O2. However, continuous and decentralized H2O2 electrosynthesis still poses many challenges. This Minireview first summarizes the development of devices for H2O2 electrosynthesis, and then introduces each component, the assembly process, and some optimization strategies. Electrochemical reactors for continuous decentralized H2O2 production are described in this Minireview, with separate discussions of flow field plates, catalyst layers, gas diffusion layers, membranes, shapes, and electrolyte compartments. The key factors of these parts and the optimization strategies for assembling flow cells are summarized. Insights and perspectives on key components are given.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202205972</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Anthraquinone ; Anthraquinones ; Carbon ; Chemical reactors ; Chemical reduction ; Continuous Production ; Electrochemical Reactors ; Electrochemistry ; Electrosynthesis ; Hydrogen Peroxide ; Liquid-liquid extraction ; Optimization ; Organic solvents ; Oxidation ; Oxygen Reduction Reaction ; Oxygen reduction reactions ; Renewable energy ; Solar energy ; Wind power</subject><ispartof>Angewandte Chemie International Edition, 2022-08, Vol.61 (35), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-9120-6634 ; 0000-0002-6007-2968 ; 0000-0001-6761-0127 ; 0000-0003-1796-5776 ; 0000-0002-6903-0422 ; 0000-0003-1888-3107 ; 0000-0003-0026-5458 ; 0000-0002-8663-9993</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202205972$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202205972$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Wen, Yichan</creatorcontrib><creatorcontrib>Zhang, Ting</creatorcontrib><creatorcontrib>Wang, Jianying</creatorcontrib><creatorcontrib>Pan, Zhelun</creatorcontrib><creatorcontrib>Wang, Tianfu</creatorcontrib><creatorcontrib>Yamashita, Hiromi</creatorcontrib><creatorcontrib>Qian, Xufang</creatorcontrib><creatorcontrib>Zhao, Yixin</creatorcontrib><title>Electrochemical Reactors for Continuous Decentralized H2O2 Production</title><title>Angewandte Chemie International Edition</title><description>The global utilization of H2O2 is currently around 4 million tons per year and is expected to continue to increase in the future. H2O2 is mainly produced by the anthraquinone process, which involves multiple steps in terms of alkylanthraquinone hydrogenation/oxidation in organic solvents and liquid–liquid extraction of H2O2. The energy‐intensive and environmentally unfriendly anthraquinone process does not meet the requirements of sustainable and low‐carbon development. The electrocatalytic two‐electron (2 e−) oxygen reduction reaction (ORR) driven by renewable energy (e.g. solar and wind power) offers a more economical, low‐carbon, and greener route to produce H2O2. However, continuous and decentralized H2O2 electrosynthesis still poses many challenges. This Minireview first summarizes the development of devices for H2O2 electrosynthesis, and then introduces each component, the assembly process, and some optimization strategies. Electrochemical reactors for continuous decentralized H2O2 production are described in this Minireview, with separate discussions of flow field plates, catalyst layers, gas diffusion layers, membranes, shapes, and electrolyte compartments. The key factors of these parts and the optimization strategies for assembling flow cells are summarized. Insights and perspectives on key components are given.</description><subject>Anthraquinone</subject><subject>Anthraquinones</subject><subject>Carbon</subject><subject>Chemical reactors</subject><subject>Chemical reduction</subject><subject>Continuous Production</subject><subject>Electrochemical Reactors</subject><subject>Electrochemistry</subject><subject>Electrosynthesis</subject><subject>Hydrogen Peroxide</subject><subject>Liquid-liquid extraction</subject><subject>Optimization</subject><subject>Organic solvents</subject><subject>Oxidation</subject><subject>Oxygen Reduction Reaction</subject><subject>Oxygen reduction reactions</subject><subject>Renewable energy</subject><subject>Solar energy</subject><subject>Wind power</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLw0AUhQdRsFa3rgOuU-f9WJYabaFYEV0Pk3nglDRTJwlSf70pla7uufBxDnwA3CM4QxDiR9NGP8MQY8iUwBdgghhGJRGCXI6ZElIKydA1uOm67chLCfkEVFXjbZ-T_fK7aE1TvHtj-5S7IqRcLFLbx3ZIQ1c8eevbPpsm_npXLPEGF285ucH2MbW34CqYpvN3_3cKPp-rj8WyXG9eVov5utxipXDJOEY8YGWtU4IEGGojaucRlVwGaRhFNcFccEaCQ46QmvoguWNeoeAop2QKHk69-5y-B9_1epuG3I6TGgtIEWdcwJFSJ-onNv6g9znuTD5oBPXRkz560mdPev66qs4f-QMabF4M</recordid><startdate>20220826</startdate><enddate>20220826</enddate><creator>Wen, Yichan</creator><creator>Zhang, Ting</creator><creator>Wang, Jianying</creator><creator>Pan, Zhelun</creator><creator>Wang, Tianfu</creator><creator>Yamashita, Hiromi</creator><creator>Qian, Xufang</creator><creator>Zhao, Yixin</creator><general>Wiley Subscription Services, Inc</general><scope>7TM</scope><scope>K9.</scope><orcidid>https://orcid.org/0000-0001-9120-6634</orcidid><orcidid>https://orcid.org/0000-0002-6007-2968</orcidid><orcidid>https://orcid.org/0000-0001-6761-0127</orcidid><orcidid>https://orcid.org/0000-0003-1796-5776</orcidid><orcidid>https://orcid.org/0000-0002-6903-0422</orcidid><orcidid>https://orcid.org/0000-0003-1888-3107</orcidid><orcidid>https://orcid.org/0000-0003-0026-5458</orcidid><orcidid>https://orcid.org/0000-0002-8663-9993</orcidid></search><sort><creationdate>20220826</creationdate><title>Electrochemical Reactors for Continuous Decentralized H2O2 Production</title><author>Wen, Yichan ; Zhang, Ting ; Wang, Jianying ; Pan, Zhelun ; Wang, Tianfu ; Yamashita, Hiromi ; Qian, Xufang ; Zhao, Yixin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j2992-56216f29ccd973f0fba7bde14868f8a541b3267653fd1d33b4ef86d5e91fd4643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anthraquinone</topic><topic>Anthraquinones</topic><topic>Carbon</topic><topic>Chemical reactors</topic><topic>Chemical reduction</topic><topic>Continuous Production</topic><topic>Electrochemical Reactors</topic><topic>Electrochemistry</topic><topic>Electrosynthesis</topic><topic>Hydrogen Peroxide</topic><topic>Liquid-liquid extraction</topic><topic>Optimization</topic><topic>Organic solvents</topic><topic>Oxidation</topic><topic>Oxygen Reduction Reaction</topic><topic>Oxygen reduction reactions</topic><topic>Renewable energy</topic><topic>Solar energy</topic><topic>Wind power</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wen, Yichan</creatorcontrib><creatorcontrib>Zhang, Ting</creatorcontrib><creatorcontrib>Wang, Jianying</creatorcontrib><creatorcontrib>Pan, Zhelun</creatorcontrib><creatorcontrib>Wang, Tianfu</creatorcontrib><creatorcontrib>Yamashita, Hiromi</creatorcontrib><creatorcontrib>Qian, Xufang</creatorcontrib><creatorcontrib>Zhao, Yixin</creatorcontrib><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wen, Yichan</au><au>Zhang, Ting</au><au>Wang, Jianying</au><au>Pan, Zhelun</au><au>Wang, Tianfu</au><au>Yamashita, Hiromi</au><au>Qian, Xufang</au><au>Zhao, Yixin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrochemical Reactors for Continuous Decentralized H2O2 Production</atitle><jtitle>Angewandte Chemie International Edition</jtitle><date>2022-08-26</date><risdate>2022</risdate><volume>61</volume><issue>35</issue><epage>n/a</epage><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>The global utilization of H2O2 is currently around 4 million tons per year and is expected to continue to increase in the future. H2O2 is mainly produced by the anthraquinone process, which involves multiple steps in terms of alkylanthraquinone hydrogenation/oxidation in organic solvents and liquid–liquid extraction of H2O2. The energy‐intensive and environmentally unfriendly anthraquinone process does not meet the requirements of sustainable and low‐carbon development. The electrocatalytic two‐electron (2 e−) oxygen reduction reaction (ORR) driven by renewable energy (e.g. solar and wind power) offers a more economical, low‐carbon, and greener route to produce H2O2. However, continuous and decentralized H2O2 electrosynthesis still poses many challenges. This Minireview first summarizes the development of devices for H2O2 electrosynthesis, and then introduces each component, the assembly process, and some optimization strategies. Electrochemical reactors for continuous decentralized H2O2 production are described in this Minireview, with separate discussions of flow field plates, catalyst layers, gas diffusion layers, membranes, shapes, and electrolyte compartments. The key factors of these parts and the optimization strategies for assembling flow cells are summarized. Insights and perspectives on key components are given.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/anie.202205972</doi><tpages>19</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0001-9120-6634</orcidid><orcidid>https://orcid.org/0000-0002-6007-2968</orcidid><orcidid>https://orcid.org/0000-0001-6761-0127</orcidid><orcidid>https://orcid.org/0000-0003-1796-5776</orcidid><orcidid>https://orcid.org/0000-0002-6903-0422</orcidid><orcidid>https://orcid.org/0000-0003-1888-3107</orcidid><orcidid>https://orcid.org/0000-0003-0026-5458</orcidid><orcidid>https://orcid.org/0000-0002-8663-9993</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2022-08, Vol.61 (35), p.n/a
issn 1433-7851
1521-3773
language eng
recordid cdi_proquest_journals_2704165670
source Wiley Online Library Journals Frontfile Complete
subjects Anthraquinone
Anthraquinones
Carbon
Chemical reactors
Chemical reduction
Continuous Production
Electrochemical Reactors
Electrochemistry
Electrosynthesis
Hydrogen Peroxide
Liquid-liquid extraction
Optimization
Organic solvents
Oxidation
Oxygen Reduction Reaction
Oxygen reduction reactions
Renewable energy
Solar energy
Wind power
title Electrochemical Reactors for Continuous Decentralized H2O2 Production
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T07%3A21%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrochemical%20Reactors%20for%20Continuous%20Decentralized%20H2O2%20Production&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Wen,%20Yichan&rft.date=2022-08-26&rft.volume=61&rft.issue=35&rft.epage=n/a&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202205972&rft_dat=%3Cproquest_wiley%3E2704165670%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2704165670&rft_id=info:pmid/&rfr_iscdi=true