Electrochemical Reactors for Continuous Decentralized H2O2 Production
The global utilization of H2O2 is currently around 4 million tons per year and is expected to continue to increase in the future. H2O2 is mainly produced by the anthraquinone process, which involves multiple steps in terms of alkylanthraquinone hydrogenation/oxidation in organic solvents and liquid–...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2022-08, Vol.61 (35), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 35 |
container_start_page | |
container_title | Angewandte Chemie International Edition |
container_volume | 61 |
creator | Wen, Yichan Zhang, Ting Wang, Jianying Pan, Zhelun Wang, Tianfu Yamashita, Hiromi Qian, Xufang Zhao, Yixin |
description | The global utilization of H2O2 is currently around 4 million tons per year and is expected to continue to increase in the future. H2O2 is mainly produced by the anthraquinone process, which involves multiple steps in terms of alkylanthraquinone hydrogenation/oxidation in organic solvents and liquid–liquid extraction of H2O2. The energy‐intensive and environmentally unfriendly anthraquinone process does not meet the requirements of sustainable and low‐carbon development. The electrocatalytic two‐electron (2 e−) oxygen reduction reaction (ORR) driven by renewable energy (e.g. solar and wind power) offers a more economical, low‐carbon, and greener route to produce H2O2. However, continuous and decentralized H2O2 electrosynthesis still poses many challenges. This Minireview first summarizes the development of devices for H2O2 electrosynthesis, and then introduces each component, the assembly process, and some optimization strategies.
Electrochemical reactors for continuous decentralized H2O2 production are described in this Minireview, with separate discussions of flow field plates, catalyst layers, gas diffusion layers, membranes, shapes, and electrolyte compartments. The key factors of these parts and the optimization strategies for assembling flow cells are summarized. Insights and perspectives on key components are given. |
doi_str_mv | 10.1002/anie.202205972 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2704165670</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2704165670</sourcerecordid><originalsourceid>FETCH-LOGICAL-j2992-56216f29ccd973f0fba7bde14868f8a541b3267653fd1d33b4ef86d5e91fd4643</originalsourceid><addsrcrecordid>eNo9kEtLw0AUhQdRsFa3rgOuU-f9WJYabaFYEV0Pk3nglDRTJwlSf70pla7uufBxDnwA3CM4QxDiR9NGP8MQY8iUwBdgghhGJRGCXI6ZElIKydA1uOm67chLCfkEVFXjbZ-T_fK7aE1TvHtj-5S7IqRcLFLbx3ZIQ1c8eevbPpsm_npXLPEGF285ucH2MbW34CqYpvN3_3cKPp-rj8WyXG9eVov5utxipXDJOEY8YGWtU4IEGGojaucRlVwGaRhFNcFccEaCQ46QmvoguWNeoeAop2QKHk69-5y-B9_1epuG3I6TGgtIEWdcwJFSJ-onNv6g9znuTD5oBPXRkz560mdPev66qs4f-QMabF4M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2704165670</pqid></control><display><type>article</type><title>Electrochemical Reactors for Continuous Decentralized H2O2 Production</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wen, Yichan ; Zhang, Ting ; Wang, Jianying ; Pan, Zhelun ; Wang, Tianfu ; Yamashita, Hiromi ; Qian, Xufang ; Zhao, Yixin</creator><creatorcontrib>Wen, Yichan ; Zhang, Ting ; Wang, Jianying ; Pan, Zhelun ; Wang, Tianfu ; Yamashita, Hiromi ; Qian, Xufang ; Zhao, Yixin</creatorcontrib><description>The global utilization of H2O2 is currently around 4 million tons per year and is expected to continue to increase in the future. H2O2 is mainly produced by the anthraquinone process, which involves multiple steps in terms of alkylanthraquinone hydrogenation/oxidation in organic solvents and liquid–liquid extraction of H2O2. The energy‐intensive and environmentally unfriendly anthraquinone process does not meet the requirements of sustainable and low‐carbon development. The electrocatalytic two‐electron (2 e−) oxygen reduction reaction (ORR) driven by renewable energy (e.g. solar and wind power) offers a more economical, low‐carbon, and greener route to produce H2O2. However, continuous and decentralized H2O2 electrosynthesis still poses many challenges. This Minireview first summarizes the development of devices for H2O2 electrosynthesis, and then introduces each component, the assembly process, and some optimization strategies.
Electrochemical reactors for continuous decentralized H2O2 production are described in this Minireview, with separate discussions of flow field plates, catalyst layers, gas diffusion layers, membranes, shapes, and electrolyte compartments. The key factors of these parts and the optimization strategies for assembling flow cells are summarized. Insights and perspectives on key components are given.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202205972</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Anthraquinone ; Anthraquinones ; Carbon ; Chemical reactors ; Chemical reduction ; Continuous Production ; Electrochemical Reactors ; Electrochemistry ; Electrosynthesis ; Hydrogen Peroxide ; Liquid-liquid extraction ; Optimization ; Organic solvents ; Oxidation ; Oxygen Reduction Reaction ; Oxygen reduction reactions ; Renewable energy ; Solar energy ; Wind power</subject><ispartof>Angewandte Chemie International Edition, 2022-08, Vol.61 (35), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-9120-6634 ; 0000-0002-6007-2968 ; 0000-0001-6761-0127 ; 0000-0003-1796-5776 ; 0000-0002-6903-0422 ; 0000-0003-1888-3107 ; 0000-0003-0026-5458 ; 0000-0002-8663-9993</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202205972$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202205972$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Wen, Yichan</creatorcontrib><creatorcontrib>Zhang, Ting</creatorcontrib><creatorcontrib>Wang, Jianying</creatorcontrib><creatorcontrib>Pan, Zhelun</creatorcontrib><creatorcontrib>Wang, Tianfu</creatorcontrib><creatorcontrib>Yamashita, Hiromi</creatorcontrib><creatorcontrib>Qian, Xufang</creatorcontrib><creatorcontrib>Zhao, Yixin</creatorcontrib><title>Electrochemical Reactors for Continuous Decentralized H2O2 Production</title><title>Angewandte Chemie International Edition</title><description>The global utilization of H2O2 is currently around 4 million tons per year and is expected to continue to increase in the future. H2O2 is mainly produced by the anthraquinone process, which involves multiple steps in terms of alkylanthraquinone hydrogenation/oxidation in organic solvents and liquid–liquid extraction of H2O2. The energy‐intensive and environmentally unfriendly anthraquinone process does not meet the requirements of sustainable and low‐carbon development. The electrocatalytic two‐electron (2 e−) oxygen reduction reaction (ORR) driven by renewable energy (e.g. solar and wind power) offers a more economical, low‐carbon, and greener route to produce H2O2. However, continuous and decentralized H2O2 electrosynthesis still poses many challenges. This Minireview first summarizes the development of devices for H2O2 electrosynthesis, and then introduces each component, the assembly process, and some optimization strategies.
Electrochemical reactors for continuous decentralized H2O2 production are described in this Minireview, with separate discussions of flow field plates, catalyst layers, gas diffusion layers, membranes, shapes, and electrolyte compartments. The key factors of these parts and the optimization strategies for assembling flow cells are summarized. Insights and perspectives on key components are given.</description><subject>Anthraquinone</subject><subject>Anthraquinones</subject><subject>Carbon</subject><subject>Chemical reactors</subject><subject>Chemical reduction</subject><subject>Continuous Production</subject><subject>Electrochemical Reactors</subject><subject>Electrochemistry</subject><subject>Electrosynthesis</subject><subject>Hydrogen Peroxide</subject><subject>Liquid-liquid extraction</subject><subject>Optimization</subject><subject>Organic solvents</subject><subject>Oxidation</subject><subject>Oxygen Reduction Reaction</subject><subject>Oxygen reduction reactions</subject><subject>Renewable energy</subject><subject>Solar energy</subject><subject>Wind power</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLw0AUhQdRsFa3rgOuU-f9WJYabaFYEV0Pk3nglDRTJwlSf70pla7uufBxDnwA3CM4QxDiR9NGP8MQY8iUwBdgghhGJRGCXI6ZElIKydA1uOm67chLCfkEVFXjbZ-T_fK7aE1TvHtj-5S7IqRcLFLbx3ZIQ1c8eevbPpsm_npXLPEGF285ucH2MbW34CqYpvN3_3cKPp-rj8WyXG9eVov5utxipXDJOEY8YGWtU4IEGGojaucRlVwGaRhFNcFccEaCQ46QmvoguWNeoeAop2QKHk69-5y-B9_1epuG3I6TGgtIEWdcwJFSJ-onNv6g9znuTD5oBPXRkz560mdPev66qs4f-QMabF4M</recordid><startdate>20220826</startdate><enddate>20220826</enddate><creator>Wen, Yichan</creator><creator>Zhang, Ting</creator><creator>Wang, Jianying</creator><creator>Pan, Zhelun</creator><creator>Wang, Tianfu</creator><creator>Yamashita, Hiromi</creator><creator>Qian, Xufang</creator><creator>Zhao, Yixin</creator><general>Wiley Subscription Services, Inc</general><scope>7TM</scope><scope>K9.</scope><orcidid>https://orcid.org/0000-0001-9120-6634</orcidid><orcidid>https://orcid.org/0000-0002-6007-2968</orcidid><orcidid>https://orcid.org/0000-0001-6761-0127</orcidid><orcidid>https://orcid.org/0000-0003-1796-5776</orcidid><orcidid>https://orcid.org/0000-0002-6903-0422</orcidid><orcidid>https://orcid.org/0000-0003-1888-3107</orcidid><orcidid>https://orcid.org/0000-0003-0026-5458</orcidid><orcidid>https://orcid.org/0000-0002-8663-9993</orcidid></search><sort><creationdate>20220826</creationdate><title>Electrochemical Reactors for Continuous Decentralized H2O2 Production</title><author>Wen, Yichan ; Zhang, Ting ; Wang, Jianying ; Pan, Zhelun ; Wang, Tianfu ; Yamashita, Hiromi ; Qian, Xufang ; Zhao, Yixin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j2992-56216f29ccd973f0fba7bde14868f8a541b3267653fd1d33b4ef86d5e91fd4643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anthraquinone</topic><topic>Anthraquinones</topic><topic>Carbon</topic><topic>Chemical reactors</topic><topic>Chemical reduction</topic><topic>Continuous Production</topic><topic>Electrochemical Reactors</topic><topic>Electrochemistry</topic><topic>Electrosynthesis</topic><topic>Hydrogen Peroxide</topic><topic>Liquid-liquid extraction</topic><topic>Optimization</topic><topic>Organic solvents</topic><topic>Oxidation</topic><topic>Oxygen Reduction Reaction</topic><topic>Oxygen reduction reactions</topic><topic>Renewable energy</topic><topic>Solar energy</topic><topic>Wind power</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wen, Yichan</creatorcontrib><creatorcontrib>Zhang, Ting</creatorcontrib><creatorcontrib>Wang, Jianying</creatorcontrib><creatorcontrib>Pan, Zhelun</creatorcontrib><creatorcontrib>Wang, Tianfu</creatorcontrib><creatorcontrib>Yamashita, Hiromi</creatorcontrib><creatorcontrib>Qian, Xufang</creatorcontrib><creatorcontrib>Zhao, Yixin</creatorcontrib><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wen, Yichan</au><au>Zhang, Ting</au><au>Wang, Jianying</au><au>Pan, Zhelun</au><au>Wang, Tianfu</au><au>Yamashita, Hiromi</au><au>Qian, Xufang</au><au>Zhao, Yixin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrochemical Reactors for Continuous Decentralized H2O2 Production</atitle><jtitle>Angewandte Chemie International Edition</jtitle><date>2022-08-26</date><risdate>2022</risdate><volume>61</volume><issue>35</issue><epage>n/a</epage><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>The global utilization of H2O2 is currently around 4 million tons per year and is expected to continue to increase in the future. H2O2 is mainly produced by the anthraquinone process, which involves multiple steps in terms of alkylanthraquinone hydrogenation/oxidation in organic solvents and liquid–liquid extraction of H2O2. The energy‐intensive and environmentally unfriendly anthraquinone process does not meet the requirements of sustainable and low‐carbon development. The electrocatalytic two‐electron (2 e−) oxygen reduction reaction (ORR) driven by renewable energy (e.g. solar and wind power) offers a more economical, low‐carbon, and greener route to produce H2O2. However, continuous and decentralized H2O2 electrosynthesis still poses many challenges. This Minireview first summarizes the development of devices for H2O2 electrosynthesis, and then introduces each component, the assembly process, and some optimization strategies.
Electrochemical reactors for continuous decentralized H2O2 production are described in this Minireview, with separate discussions of flow field plates, catalyst layers, gas diffusion layers, membranes, shapes, and electrolyte compartments. The key factors of these parts and the optimization strategies for assembling flow cells are summarized. Insights and perspectives on key components are given.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/anie.202205972</doi><tpages>19</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0001-9120-6634</orcidid><orcidid>https://orcid.org/0000-0002-6007-2968</orcidid><orcidid>https://orcid.org/0000-0001-6761-0127</orcidid><orcidid>https://orcid.org/0000-0003-1796-5776</orcidid><orcidid>https://orcid.org/0000-0002-6903-0422</orcidid><orcidid>https://orcid.org/0000-0003-1888-3107</orcidid><orcidid>https://orcid.org/0000-0003-0026-5458</orcidid><orcidid>https://orcid.org/0000-0002-8663-9993</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2022-08, Vol.61 (35), p.n/a |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_proquest_journals_2704165670 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Anthraquinone Anthraquinones Carbon Chemical reactors Chemical reduction Continuous Production Electrochemical Reactors Electrochemistry Electrosynthesis Hydrogen Peroxide Liquid-liquid extraction Optimization Organic solvents Oxidation Oxygen Reduction Reaction Oxygen reduction reactions Renewable energy Solar energy Wind power |
title | Electrochemical Reactors for Continuous Decentralized H2O2 Production |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T07%3A21%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrochemical%20Reactors%20for%20Continuous%20Decentralized%20H2O2%20Production&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Wen,%20Yichan&rft.date=2022-08-26&rft.volume=61&rft.issue=35&rft.epage=n/a&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202205972&rft_dat=%3Cproquest_wiley%3E2704165670%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2704165670&rft_id=info:pmid/&rfr_iscdi=true |