Theory‐Guided Machine Learning to Predict the Performance of Noble Metal Catalysts in the Water‐Gas Shift Reaction
Machine learning (ML) has widespread applications in catalyst discovery and reaction optimization. We present a theory‐guided machine learning framework to evaluate the carbon monoxide (CO) conversion performance of noble metal catalysts in water‐gas shift (WGS) reaction. Our study is based on an op...
Gespeichert in:
Veröffentlicht in: | ChemCatChem 2022-08, Vol.14 (16), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!