Theory‐Guided Machine Learning to Predict the Performance of Noble Metal Catalysts in the Water‐Gas Shift Reaction

Machine learning (ML) has widespread applications in catalyst discovery and reaction optimization. We present a theory‐guided machine learning framework to evaluate the carbon monoxide (CO) conversion performance of noble metal catalysts in water‐gas shift (WGS) reaction. Our study is based on an op...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemCatChem 2022-08, Vol.14 (16), p.n/a
Hauptverfasser: Chattoraj, Joyjit, Hamadicharef, Brahim, Kong, Jian Feng, Pargi, Mohan Kashyap, Zeng, Yingzhi, Poh, Chee Kok, Chen, Luwei, Gao, Fei, Tan, Teck Leong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!