NECE: Narrative Event Chain Extraction Toolkit

To understand a narrative, it is essential to comprehend the temporal event flows, especially those associated with main characters; however, this can be challenging with lengthy and unstructured narrative texts. To address this, we introduce NECE, an open-access, document-level toolkit that automat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-08
Hauptverfasser: Xu, Guangxuan, Paulina Toro Isaza, Li, Moshi, Akintoye Oloko, Yao, Bingsheng, Sanctos, Cassia, Adebiyi, Aminat, Hou, Yufang, Peng, Nanyun, Wang, Dakuo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Xu, Guangxuan
Paulina Toro Isaza
Li, Moshi
Akintoye Oloko
Yao, Bingsheng
Sanctos, Cassia
Adebiyi, Aminat
Hou, Yufang
Peng, Nanyun
Wang, Dakuo
description To understand a narrative, it is essential to comprehend the temporal event flows, especially those associated with main characters; however, this can be challenging with lengthy and unstructured narrative texts. To address this, we introduce NECE, an open-access, document-level toolkit that automatically extracts and aligns narrative events in the temporal order of their occurrence. Through extensive evaluations, we show the high quality of the NECE toolkit and demonstrates its downstream application in analyzing narrative bias regarding gender. We also openly discuss the shortcomings of the current approach, and potential of leveraging generative models in future works. Lastly the NECE toolkit includes both a Python library and a user-friendly web interface, which offer equal access to professionals and layman audience alike, to visualize event chain, obtain narrative flows, or study narrative bias.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2704125013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2704125013</sourcerecordid><originalsourceid>FETCH-proquest_journals_27041250133</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQ83N1drVS8EssKkosySxLVXAtS80rUXDOSMzMU3CtKClKTC7JzM9TCMnPz8nOLOFhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjcwMTQyNTA0NjY-JUAQCIBTFy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2704125013</pqid></control><display><type>article</type><title>NECE: Narrative Event Chain Extraction Toolkit</title><source>Free E- Journals</source><creator>Xu, Guangxuan ; Paulina Toro Isaza ; Li, Moshi ; Akintoye Oloko ; Yao, Bingsheng ; Sanctos, Cassia ; Adebiyi, Aminat ; Hou, Yufang ; Peng, Nanyun ; Wang, Dakuo</creator><creatorcontrib>Xu, Guangxuan ; Paulina Toro Isaza ; Li, Moshi ; Akintoye Oloko ; Yao, Bingsheng ; Sanctos, Cassia ; Adebiyi, Aminat ; Hou, Yufang ; Peng, Nanyun ; Wang, Dakuo</creatorcontrib><description>To understand a narrative, it is essential to comprehend the temporal event flows, especially those associated with main characters; however, this can be challenging with lengthy and unstructured narrative texts. To address this, we introduce NECE, an open-access, document-level toolkit that automatically extracts and aligns narrative events in the temporal order of their occurrence. Through extensive evaluations, we show the high quality of the NECE toolkit and demonstrates its downstream application in analyzing narrative bias regarding gender. We also openly discuss the shortcomings of the current approach, and potential of leveraging generative models in future works. Lastly the NECE toolkit includes both a Python library and a user-friendly web interface, which offer equal access to professionals and layman audience alike, to visualize event chain, obtain narrative flows, or study narrative bias.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Chains ; Documents ; Feature extraction ; Human bias ; Narratives ; Toolkits</subject><ispartof>arXiv.org, 2023-08</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Xu, Guangxuan</creatorcontrib><creatorcontrib>Paulina Toro Isaza</creatorcontrib><creatorcontrib>Li, Moshi</creatorcontrib><creatorcontrib>Akintoye Oloko</creatorcontrib><creatorcontrib>Yao, Bingsheng</creatorcontrib><creatorcontrib>Sanctos, Cassia</creatorcontrib><creatorcontrib>Adebiyi, Aminat</creatorcontrib><creatorcontrib>Hou, Yufang</creatorcontrib><creatorcontrib>Peng, Nanyun</creatorcontrib><creatorcontrib>Wang, Dakuo</creatorcontrib><title>NECE: Narrative Event Chain Extraction Toolkit</title><title>arXiv.org</title><description>To understand a narrative, it is essential to comprehend the temporal event flows, especially those associated with main characters; however, this can be challenging with lengthy and unstructured narrative texts. To address this, we introduce NECE, an open-access, document-level toolkit that automatically extracts and aligns narrative events in the temporal order of their occurrence. Through extensive evaluations, we show the high quality of the NECE toolkit and demonstrates its downstream application in analyzing narrative bias regarding gender. We also openly discuss the shortcomings of the current approach, and potential of leveraging generative models in future works. Lastly the NECE toolkit includes both a Python library and a user-friendly web interface, which offer equal access to professionals and layman audience alike, to visualize event chain, obtain narrative flows, or study narrative bias.</description><subject>Algorithms</subject><subject>Chains</subject><subject>Documents</subject><subject>Feature extraction</subject><subject>Human bias</subject><subject>Narratives</subject><subject>Toolkits</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQ83N1drVS8EssKkosySxLVXAtS80rUXDOSMzMU3CtKClKTC7JzM9TCMnPz8nOLOFhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjcwMTQyNTA0NjY-JUAQCIBTFy</recordid><startdate>20230814</startdate><enddate>20230814</enddate><creator>Xu, Guangxuan</creator><creator>Paulina Toro Isaza</creator><creator>Li, Moshi</creator><creator>Akintoye Oloko</creator><creator>Yao, Bingsheng</creator><creator>Sanctos, Cassia</creator><creator>Adebiyi, Aminat</creator><creator>Hou, Yufang</creator><creator>Peng, Nanyun</creator><creator>Wang, Dakuo</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20230814</creationdate><title>NECE: Narrative Event Chain Extraction Toolkit</title><author>Xu, Guangxuan ; Paulina Toro Isaza ; Li, Moshi ; Akintoye Oloko ; Yao, Bingsheng ; Sanctos, Cassia ; Adebiyi, Aminat ; Hou, Yufang ; Peng, Nanyun ; Wang, Dakuo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27041250133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Chains</topic><topic>Documents</topic><topic>Feature extraction</topic><topic>Human bias</topic><topic>Narratives</topic><topic>Toolkits</topic><toplevel>online_resources</toplevel><creatorcontrib>Xu, Guangxuan</creatorcontrib><creatorcontrib>Paulina Toro Isaza</creatorcontrib><creatorcontrib>Li, Moshi</creatorcontrib><creatorcontrib>Akintoye Oloko</creatorcontrib><creatorcontrib>Yao, Bingsheng</creatorcontrib><creatorcontrib>Sanctos, Cassia</creatorcontrib><creatorcontrib>Adebiyi, Aminat</creatorcontrib><creatorcontrib>Hou, Yufang</creatorcontrib><creatorcontrib>Peng, Nanyun</creatorcontrib><creatorcontrib>Wang, Dakuo</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Guangxuan</au><au>Paulina Toro Isaza</au><au>Li, Moshi</au><au>Akintoye Oloko</au><au>Yao, Bingsheng</au><au>Sanctos, Cassia</au><au>Adebiyi, Aminat</au><au>Hou, Yufang</au><au>Peng, Nanyun</au><au>Wang, Dakuo</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>NECE: Narrative Event Chain Extraction Toolkit</atitle><jtitle>arXiv.org</jtitle><date>2023-08-14</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>To understand a narrative, it is essential to comprehend the temporal event flows, especially those associated with main characters; however, this can be challenging with lengthy and unstructured narrative texts. To address this, we introduce NECE, an open-access, document-level toolkit that automatically extracts and aligns narrative events in the temporal order of their occurrence. Through extensive evaluations, we show the high quality of the NECE toolkit and demonstrates its downstream application in analyzing narrative bias regarding gender. We also openly discuss the shortcomings of the current approach, and potential of leveraging generative models in future works. Lastly the NECE toolkit includes both a Python library and a user-friendly web interface, which offer equal access to professionals and layman audience alike, to visualize event chain, obtain narrative flows, or study narrative bias.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_2704125013
source Free E- Journals
subjects Algorithms
Chains
Documents
Feature extraction
Human bias
Narratives
Toolkits
title NECE: Narrative Event Chain Extraction Toolkit
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T07%3A47%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=NECE:%20Narrative%20Event%20Chain%20Extraction%20Toolkit&rft.jtitle=arXiv.org&rft.au=Xu,%20Guangxuan&rft.date=2023-08-14&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2704125013%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2704125013&rft_id=info:pmid/&rfr_iscdi=true