NECE: Narrative Event Chain Extraction Toolkit
To understand a narrative, it is essential to comprehend the temporal event flows, especially those associated with main characters; however, this can be challenging with lengthy and unstructured narrative texts. To address this, we introduce NECE, an open-access, document-level toolkit that automat...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-08 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Xu, Guangxuan Paulina Toro Isaza Li, Moshi Akintoye Oloko Yao, Bingsheng Sanctos, Cassia Adebiyi, Aminat Hou, Yufang Peng, Nanyun Wang, Dakuo |
description | To understand a narrative, it is essential to comprehend the temporal event flows, especially those associated with main characters; however, this can be challenging with lengthy and unstructured narrative texts. To address this, we introduce NECE, an open-access, document-level toolkit that automatically extracts and aligns narrative events in the temporal order of their occurrence. Through extensive evaluations, we show the high quality of the NECE toolkit and demonstrates its downstream application in analyzing narrative bias regarding gender. We also openly discuss the shortcomings of the current approach, and potential of leveraging generative models in future works. Lastly the NECE toolkit includes both a Python library and a user-friendly web interface, which offer equal access to professionals and layman audience alike, to visualize event chain, obtain narrative flows, or study narrative bias. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2704125013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2704125013</sourcerecordid><originalsourceid>FETCH-proquest_journals_27041250133</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQ83N1drVS8EssKkosySxLVXAtS80rUXDOSMzMU3CtKClKTC7JzM9TCMnPz8nOLOFhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjcwMTQyNTA0NjY-JUAQCIBTFy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2704125013</pqid></control><display><type>article</type><title>NECE: Narrative Event Chain Extraction Toolkit</title><source>Free E- Journals</source><creator>Xu, Guangxuan ; Paulina Toro Isaza ; Li, Moshi ; Akintoye Oloko ; Yao, Bingsheng ; Sanctos, Cassia ; Adebiyi, Aminat ; Hou, Yufang ; Peng, Nanyun ; Wang, Dakuo</creator><creatorcontrib>Xu, Guangxuan ; Paulina Toro Isaza ; Li, Moshi ; Akintoye Oloko ; Yao, Bingsheng ; Sanctos, Cassia ; Adebiyi, Aminat ; Hou, Yufang ; Peng, Nanyun ; Wang, Dakuo</creatorcontrib><description>To understand a narrative, it is essential to comprehend the temporal event flows, especially those associated with main characters; however, this can be challenging with lengthy and unstructured narrative texts. To address this, we introduce NECE, an open-access, document-level toolkit that automatically extracts and aligns narrative events in the temporal order of their occurrence. Through extensive evaluations, we show the high quality of the NECE toolkit and demonstrates its downstream application in analyzing narrative bias regarding gender. We also openly discuss the shortcomings of the current approach, and potential of leveraging generative models in future works. Lastly the NECE toolkit includes both a Python library and a user-friendly web interface, which offer equal access to professionals and layman audience alike, to visualize event chain, obtain narrative flows, or study narrative bias.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Chains ; Documents ; Feature extraction ; Human bias ; Narratives ; Toolkits</subject><ispartof>arXiv.org, 2023-08</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Xu, Guangxuan</creatorcontrib><creatorcontrib>Paulina Toro Isaza</creatorcontrib><creatorcontrib>Li, Moshi</creatorcontrib><creatorcontrib>Akintoye Oloko</creatorcontrib><creatorcontrib>Yao, Bingsheng</creatorcontrib><creatorcontrib>Sanctos, Cassia</creatorcontrib><creatorcontrib>Adebiyi, Aminat</creatorcontrib><creatorcontrib>Hou, Yufang</creatorcontrib><creatorcontrib>Peng, Nanyun</creatorcontrib><creatorcontrib>Wang, Dakuo</creatorcontrib><title>NECE: Narrative Event Chain Extraction Toolkit</title><title>arXiv.org</title><description>To understand a narrative, it is essential to comprehend the temporal event flows, especially those associated with main characters; however, this can be challenging with lengthy and unstructured narrative texts. To address this, we introduce NECE, an open-access, document-level toolkit that automatically extracts and aligns narrative events in the temporal order of their occurrence. Through extensive evaluations, we show the high quality of the NECE toolkit and demonstrates its downstream application in analyzing narrative bias regarding gender. We also openly discuss the shortcomings of the current approach, and potential of leveraging generative models in future works. Lastly the NECE toolkit includes both a Python library and a user-friendly web interface, which offer equal access to professionals and layman audience alike, to visualize event chain, obtain narrative flows, or study narrative bias.</description><subject>Algorithms</subject><subject>Chains</subject><subject>Documents</subject><subject>Feature extraction</subject><subject>Human bias</subject><subject>Narratives</subject><subject>Toolkits</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQ83N1drVS8EssKkosySxLVXAtS80rUXDOSMzMU3CtKClKTC7JzM9TCMnPz8nOLOFhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjcwMTQyNTA0NjY-JUAQCIBTFy</recordid><startdate>20230814</startdate><enddate>20230814</enddate><creator>Xu, Guangxuan</creator><creator>Paulina Toro Isaza</creator><creator>Li, Moshi</creator><creator>Akintoye Oloko</creator><creator>Yao, Bingsheng</creator><creator>Sanctos, Cassia</creator><creator>Adebiyi, Aminat</creator><creator>Hou, Yufang</creator><creator>Peng, Nanyun</creator><creator>Wang, Dakuo</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20230814</creationdate><title>NECE: Narrative Event Chain Extraction Toolkit</title><author>Xu, Guangxuan ; Paulina Toro Isaza ; Li, Moshi ; Akintoye Oloko ; Yao, Bingsheng ; Sanctos, Cassia ; Adebiyi, Aminat ; Hou, Yufang ; Peng, Nanyun ; Wang, Dakuo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27041250133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Chains</topic><topic>Documents</topic><topic>Feature extraction</topic><topic>Human bias</topic><topic>Narratives</topic><topic>Toolkits</topic><toplevel>online_resources</toplevel><creatorcontrib>Xu, Guangxuan</creatorcontrib><creatorcontrib>Paulina Toro Isaza</creatorcontrib><creatorcontrib>Li, Moshi</creatorcontrib><creatorcontrib>Akintoye Oloko</creatorcontrib><creatorcontrib>Yao, Bingsheng</creatorcontrib><creatorcontrib>Sanctos, Cassia</creatorcontrib><creatorcontrib>Adebiyi, Aminat</creatorcontrib><creatorcontrib>Hou, Yufang</creatorcontrib><creatorcontrib>Peng, Nanyun</creatorcontrib><creatorcontrib>Wang, Dakuo</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Guangxuan</au><au>Paulina Toro Isaza</au><au>Li, Moshi</au><au>Akintoye Oloko</au><au>Yao, Bingsheng</au><au>Sanctos, Cassia</au><au>Adebiyi, Aminat</au><au>Hou, Yufang</au><au>Peng, Nanyun</au><au>Wang, Dakuo</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>NECE: Narrative Event Chain Extraction Toolkit</atitle><jtitle>arXiv.org</jtitle><date>2023-08-14</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>To understand a narrative, it is essential to comprehend the temporal event flows, especially those associated with main characters; however, this can be challenging with lengthy and unstructured narrative texts. To address this, we introduce NECE, an open-access, document-level toolkit that automatically extracts and aligns narrative events in the temporal order of their occurrence. Through extensive evaluations, we show the high quality of the NECE toolkit and demonstrates its downstream application in analyzing narrative bias regarding gender. We also openly discuss the shortcomings of the current approach, and potential of leveraging generative models in future works. Lastly the NECE toolkit includes both a Python library and a user-friendly web interface, which offer equal access to professionals and layman audience alike, to visualize event chain, obtain narrative flows, or study narrative bias.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-08 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2704125013 |
source | Free E- Journals |
subjects | Algorithms Chains Documents Feature extraction Human bias Narratives Toolkits |
title | NECE: Narrative Event Chain Extraction Toolkit |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T07%3A47%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=NECE:%20Narrative%20Event%20Chain%20Extraction%20Toolkit&rft.jtitle=arXiv.org&rft.au=Xu,%20Guangxuan&rft.date=2023-08-14&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2704125013%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2704125013&rft_id=info:pmid/&rfr_iscdi=true |