The application of chaos theory in COVID-19 data analysis

This research presents a study on the existence of chaotic behaviour in COVID-19 time series data using the Largest Lyapunov Exponent (LLE) and forecasts the outcome of the new daily cases of infected people until 2023 by chaos indicators tools, Logistic Map. The study also chooses another mathemati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Fauzi, Nurul Umirah Mohd, Bakar, Muhammad Al-Aniq Abu, Zolkply, Nurul Hidayah, Saleh, Siti Hidayah Muhad, Sapini, Muhamad Luqman, Yusof, Norliza Muhamad
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2472
creator Fauzi, Nurul Umirah Mohd
Bakar, Muhammad Al-Aniq Abu
Zolkply, Nurul Hidayah
Saleh, Siti Hidayah Muhad
Sapini, Muhamad Luqman
Yusof, Norliza Muhamad
description This research presents a study on the existence of chaotic behaviour in COVID-19 time series data using the Largest Lyapunov Exponent (LLE) and forecasts the outcome of the new daily cases of infected people until 2023 by chaos indicators tools, Logistic Map. The study also chooses another mathematical model, Linear Regression, to verify the accuracy of the Logistic Map by comparing both methods. The comparison between these methods is analyzed by using Mean Square Error (MSE). The data was collected from the end of January until early December 2020 involving Malaysia, China, Singapore, the USA and Italy. The result shows the countries tested have the existence of chaotic behaviour. Meanwhile, forecasting depicts some countries whose cases are declining and some are increasing.
doi_str_mv 10.1063/5.0093272
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2704107279</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2704107279</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2032-ca1cf323405354611d19bcd3f93d9d2b1694dca8a97aa9c2855956ca181e30883</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMoWFcP_oOANyFrJmma5ij1a2FhL6t4C7NJS7vUpjZdYf-91V3w5mlgeN6XmYeQa-Bz4Jm8U3POjRRanJAElAKmM8hOSTJtUyZS-X5OLmLcci6M1nlCzLouKfZ92zgcm9DRUFFXY4h0rMsw7GnT0WL1tnhgYKjHESl22O5jEy_JWYVtLK-Oc0Zenx7XxQtbrp4Xxf2S9YJLwRyCq6SQKVdSpRmAB7NxXlZGeuPFBjKTeoc5Go1onMiVMiqbUjmUkue5nJGbQ28_hM9dGUe7DbthOiJaoXkKXAttJur2QEXXjL-f2H5oPnDYW-D2R41V9qjmP_grDH-g7X0lvwE6emFr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2704107279</pqid></control><display><type>conference_proceeding</type><title>The application of chaos theory in COVID-19 data analysis</title><source>AIP Journals Complete</source><creator>Fauzi, Nurul Umirah Mohd ; Bakar, Muhammad Al-Aniq Abu ; Zolkply, Nurul Hidayah ; Saleh, Siti Hidayah Muhad ; Sapini, Muhamad Luqman ; Yusof, Norliza Muhamad</creator><contributor>Zulkepli, Jafri ; Aziz, Nazrina ; Benjamin, Josephine Bernadette ; Ibrahim, Haslinda ; Khan, Sahubar ; Decena, Ma. Carlota Blajadia ; Yaakob, Abdul Malek Bin</contributor><creatorcontrib>Fauzi, Nurul Umirah Mohd ; Bakar, Muhammad Al-Aniq Abu ; Zolkply, Nurul Hidayah ; Saleh, Siti Hidayah Muhad ; Sapini, Muhamad Luqman ; Yusof, Norliza Muhamad ; Zulkepli, Jafri ; Aziz, Nazrina ; Benjamin, Josephine Bernadette ; Ibrahim, Haslinda ; Khan, Sahubar ; Decena, Ma. Carlota Blajadia ; Yaakob, Abdul Malek Bin</creatorcontrib><description>This research presents a study on the existence of chaotic behaviour in COVID-19 time series data using the Largest Lyapunov Exponent (LLE) and forecasts the outcome of the new daily cases of infected people until 2023 by chaos indicators tools, Logistic Map. The study also chooses another mathematical model, Linear Regression, to verify the accuracy of the Logistic Map by comparing both methods. The comparison between these methods is analyzed by using Mean Square Error (MSE). The data was collected from the end of January until early December 2020 involving Malaysia, China, Singapore, the USA and Italy. The result shows the countries tested have the existence of chaotic behaviour. Meanwhile, forecasting depicts some countries whose cases are declining and some are increasing.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0093272</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Chaos theory ; Data analysis ; Error analysis ; Liapunov exponents ; Regression models</subject><ispartof>AIP conference proceedings, 2022, Vol.2472 (1)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0093272$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4498,23909,23910,25118,27901,27902,76127</link.rule.ids></links><search><contributor>Zulkepli, Jafri</contributor><contributor>Aziz, Nazrina</contributor><contributor>Benjamin, Josephine Bernadette</contributor><contributor>Ibrahim, Haslinda</contributor><contributor>Khan, Sahubar</contributor><contributor>Decena, Ma. Carlota Blajadia</contributor><contributor>Yaakob, Abdul Malek Bin</contributor><creatorcontrib>Fauzi, Nurul Umirah Mohd</creatorcontrib><creatorcontrib>Bakar, Muhammad Al-Aniq Abu</creatorcontrib><creatorcontrib>Zolkply, Nurul Hidayah</creatorcontrib><creatorcontrib>Saleh, Siti Hidayah Muhad</creatorcontrib><creatorcontrib>Sapini, Muhamad Luqman</creatorcontrib><creatorcontrib>Yusof, Norliza Muhamad</creatorcontrib><title>The application of chaos theory in COVID-19 data analysis</title><title>AIP conference proceedings</title><description>This research presents a study on the existence of chaotic behaviour in COVID-19 time series data using the Largest Lyapunov Exponent (LLE) and forecasts the outcome of the new daily cases of infected people until 2023 by chaos indicators tools, Logistic Map. The study also chooses another mathematical model, Linear Regression, to verify the accuracy of the Logistic Map by comparing both methods. The comparison between these methods is analyzed by using Mean Square Error (MSE). The data was collected from the end of January until early December 2020 involving Malaysia, China, Singapore, the USA and Italy. The result shows the countries tested have the existence of chaotic behaviour. Meanwhile, forecasting depicts some countries whose cases are declining and some are increasing.</description><subject>Chaos theory</subject><subject>Data analysis</subject><subject>Error analysis</subject><subject>Liapunov exponents</subject><subject>Regression models</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kE1LxDAQhoMoWFcP_oOANyFrJmma5ij1a2FhL6t4C7NJS7vUpjZdYf-91V3w5mlgeN6XmYeQa-Bz4Jm8U3POjRRanJAElAKmM8hOSTJtUyZS-X5OLmLcci6M1nlCzLouKfZ92zgcm9DRUFFXY4h0rMsw7GnT0WL1tnhgYKjHESl22O5jEy_JWYVtLK-Oc0Zenx7XxQtbrp4Xxf2S9YJLwRyCq6SQKVdSpRmAB7NxXlZGeuPFBjKTeoc5Go1onMiVMiqbUjmUkue5nJGbQ28_hM9dGUe7DbthOiJaoXkKXAttJur2QEXXjL-f2H5oPnDYW-D2R41V9qjmP_grDH-g7X0lvwE6emFr</recordid><startdate>20220819</startdate><enddate>20220819</enddate><creator>Fauzi, Nurul Umirah Mohd</creator><creator>Bakar, Muhammad Al-Aniq Abu</creator><creator>Zolkply, Nurul Hidayah</creator><creator>Saleh, Siti Hidayah Muhad</creator><creator>Sapini, Muhamad Luqman</creator><creator>Yusof, Norliza Muhamad</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20220819</creationdate><title>The application of chaos theory in COVID-19 data analysis</title><author>Fauzi, Nurul Umirah Mohd ; Bakar, Muhammad Al-Aniq Abu ; Zolkply, Nurul Hidayah ; Saleh, Siti Hidayah Muhad ; Sapini, Muhamad Luqman ; Yusof, Norliza Muhamad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2032-ca1cf323405354611d19bcd3f93d9d2b1694dca8a97aa9c2855956ca181e30883</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Chaos theory</topic><topic>Data analysis</topic><topic>Error analysis</topic><topic>Liapunov exponents</topic><topic>Regression models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fauzi, Nurul Umirah Mohd</creatorcontrib><creatorcontrib>Bakar, Muhammad Al-Aniq Abu</creatorcontrib><creatorcontrib>Zolkply, Nurul Hidayah</creatorcontrib><creatorcontrib>Saleh, Siti Hidayah Muhad</creatorcontrib><creatorcontrib>Sapini, Muhamad Luqman</creatorcontrib><creatorcontrib>Yusof, Norliza Muhamad</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fauzi, Nurul Umirah Mohd</au><au>Bakar, Muhammad Al-Aniq Abu</au><au>Zolkply, Nurul Hidayah</au><au>Saleh, Siti Hidayah Muhad</au><au>Sapini, Muhamad Luqman</au><au>Yusof, Norliza Muhamad</au><au>Zulkepli, Jafri</au><au>Aziz, Nazrina</au><au>Benjamin, Josephine Bernadette</au><au>Ibrahim, Haslinda</au><au>Khan, Sahubar</au><au>Decena, Ma. Carlota Blajadia</au><au>Yaakob, Abdul Malek Bin</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>The application of chaos theory in COVID-19 data analysis</atitle><btitle>AIP conference proceedings</btitle><date>2022-08-19</date><risdate>2022</risdate><volume>2472</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>This research presents a study on the existence of chaotic behaviour in COVID-19 time series data using the Largest Lyapunov Exponent (LLE) and forecasts the outcome of the new daily cases of infected people until 2023 by chaos indicators tools, Logistic Map. The study also chooses another mathematical model, Linear Regression, to verify the accuracy of the Logistic Map by comparing both methods. The comparison between these methods is analyzed by using Mean Square Error (MSE). The data was collected from the end of January until early December 2020 involving Malaysia, China, Singapore, the USA and Italy. The result shows the countries tested have the existence of chaotic behaviour. Meanwhile, forecasting depicts some countries whose cases are declining and some are increasing.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0093272</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2022, Vol.2472 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2704107279
source AIP Journals Complete
subjects Chaos theory
Data analysis
Error analysis
Liapunov exponents
Regression models
title The application of chaos theory in COVID-19 data analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T23%3A54%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=The%20application%20of%20chaos%20theory%20in%20COVID-19%20data%20analysis&rft.btitle=AIP%20conference%20proceedings&rft.au=Fauzi,%20Nurul%20Umirah%20Mohd&rft.date=2022-08-19&rft.volume=2472&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0093272&rft_dat=%3Cproquest_scita%3E2704107279%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2704107279&rft_id=info:pmid/&rfr_iscdi=true