SparseAlign: A Grid-Free Algorithm for Automatic Marker Localization and Deformation Estimation in Cryo-Electron Tomography

Tilt-series alignment is crucial to obtaining high-resolution reconstructions in cryo-electron tomography. Beam-induced local deformation of the sample is hard to estimate from the low-contrast sample alone, and often requires fiducial gold bead markers. The state-of-the-art approach for deformation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on computational imaging 2022, Vol.8, p.651-665
Hauptverfasser: Ganguly, Poulami Somanya, Lucka, Felix, Kohr, Holger, Franken, Erik, Hupkes, Hermen Jan, Batenburg, Kees Joost
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 665
container_issue
container_start_page 651
container_title IEEE transactions on computational imaging
container_volume 8
creator Ganguly, Poulami Somanya
Lucka, Felix
Kohr, Holger
Franken, Erik
Hupkes, Hermen Jan
Batenburg, Kees Joost
description Tilt-series alignment is crucial to obtaining high-resolution reconstructions in cryo-electron tomography. Beam-induced local deformation of the sample is hard to estimate from the low-contrast sample alone, and often requires fiducial gold bead markers. The state-of-the-art approach for deformation estimation uses (semi-)manually labelled marker locations in projection data to fit the parameters of a polynomial deformation model. Manually-labelled marker locations are difficult to obtain when data are noisy or markers overlap in projection data. We propose an alternative mathematical approach for simultaneous marker localization and deformation estimation by extending a grid-free algorithm first proposed in the context of super-resolution single-molecule localization microscopy. Our approach does not require labelled marker locations; instead, we use an image-based loss where we compare the forward projection of markers with the observed data. We equip this marker localization scheme with an additional deformation estimation component and solve for a reduced number of deformation parameters. Using extensive numerical studies on marker-only samples, we show that our approach automatically finds markers and reliably estimates sample deformation without labelled marker data. We further demonstrate the applicability of our approach for a broad range of model mismatch scenarios, including experimental electron tomography data of gold markers on ice.
doi_str_mv 10.1109/TCI.2022.3194719
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2704094907</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9844249</ieee_id><sourcerecordid>2704094907</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-79f0f8e293a9b052eaa9b7beeb905b28fced798f34a258955e64f6f28637ef4e3</originalsourceid><addsrcrecordid>eNo9ULFOwzAUtBBIVKU7Eosl5hTHduKYLSptqVTEQJktJ31uU5I42OlQ-HlcpWK6e6e79_QOofuYTOOYyKfNbDWlhNIpiyUXsbxCI8oYiyQn7DrwRLCIcJbeoon3B0JIzCVlWTpCvx-ddh7yutq1zzjHS1dto4UDwHm9s67q9w021uH82NtG91WJ37T7AofXttR19RMk22LdbvELBF8zzHPfVxdatXjmTjaa11D2Lggb29id093-dIdujK49TC44Rp-L-Wb2Gq3fl6tZvo5KmrI-EtIQkwGVTMuCJBR0QFEAFJIkBc1MCVshM8O4pkkmkwRSblJDs5QJMBzYGD0Oeztnv4_ge3WwR9eGk4oKwonkkojgIoOrdNZ7B0Z1LjzhTiom6tyyCi2rc8vq0nKIPAyRCgD-7TLjnHLJ_gBYHHmi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2704094907</pqid></control><display><type>article</type><title>SparseAlign: A Grid-Free Algorithm for Automatic Marker Localization and Deformation Estimation in Cryo-Electron Tomography</title><source>IEEE Electronic Library (IEL)</source><creator>Ganguly, Poulami Somanya ; Lucka, Felix ; Kohr, Holger ; Franken, Erik ; Hupkes, Hermen Jan ; Batenburg, Kees Joost</creator><creatorcontrib>Ganguly, Poulami Somanya ; Lucka, Felix ; Kohr, Holger ; Franken, Erik ; Hupkes, Hermen Jan ; Batenburg, Kees Joost</creatorcontrib><description>Tilt-series alignment is crucial to obtaining high-resolution reconstructions in cryo-electron tomography. Beam-induced local deformation of the sample is hard to estimate from the low-contrast sample alone, and often requires fiducial gold bead markers. The state-of-the-art approach for deformation estimation uses (semi-)manually labelled marker locations in projection data to fit the parameters of a polynomial deformation model. Manually-labelled marker locations are difficult to obtain when data are noisy or markers overlap in projection data. We propose an alternative mathematical approach for simultaneous marker localization and deformation estimation by extending a grid-free algorithm first proposed in the context of super-resolution single-molecule localization microscopy. Our approach does not require labelled marker locations; instead, we use an image-based loss where we compare the forward projection of markers with the observed data. We equip this marker localization scheme with an additional deformation estimation component and solve for a reduced number of deformation parameters. Using extensive numerical studies on marker-only samples, we show that our approach automatically finds markers and reliably estimates sample deformation without labelled marker data. We further demonstrate the applicability of our approach for a broad range of model mismatch scenarios, including experimental electron tomography data of gold markers on ice.</description><identifier>ISSN: 2573-0436</identifier><identifier>EISSN: 2333-9403</identifier><identifier>DOI: 10.1109/TCI.2022.3194719</identifier><identifier>CODEN: ITCIAJ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; conditional gradient method ; Data models ; Deformable models ; Deformation ; Gold ; Image reconstruction ; Image resolution ; Localization ; Location awareness ; marker-based alignment ; Markers ; Mathematical models ; Mathematical super-resolution ; parallel-beam tomography ; Parameters ; Polynomials ; Strain ; Tomography</subject><ispartof>IEEE transactions on computational imaging, 2022, Vol.8, p.651-665</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c263t-79f0f8e293a9b052eaa9b7beeb905b28fced798f34a258955e64f6f28637ef4e3</citedby><cites>FETCH-LOGICAL-c263t-79f0f8e293a9b052eaa9b7beeb905b28fced798f34a258955e64f6f28637ef4e3</cites><orcidid>0000-0003-1672-7194 ; 0000-0003-0727-9561 ; 0000-0003-1726-5323 ; 0000-0002-8763-5177</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9844249$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4022,27922,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9844249$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ganguly, Poulami Somanya</creatorcontrib><creatorcontrib>Lucka, Felix</creatorcontrib><creatorcontrib>Kohr, Holger</creatorcontrib><creatorcontrib>Franken, Erik</creatorcontrib><creatorcontrib>Hupkes, Hermen Jan</creatorcontrib><creatorcontrib>Batenburg, Kees Joost</creatorcontrib><title>SparseAlign: A Grid-Free Algorithm for Automatic Marker Localization and Deformation Estimation in Cryo-Electron Tomography</title><title>IEEE transactions on computational imaging</title><addtitle>TCI</addtitle><description>Tilt-series alignment is crucial to obtaining high-resolution reconstructions in cryo-electron tomography. Beam-induced local deformation of the sample is hard to estimate from the low-contrast sample alone, and often requires fiducial gold bead markers. The state-of-the-art approach for deformation estimation uses (semi-)manually labelled marker locations in projection data to fit the parameters of a polynomial deformation model. Manually-labelled marker locations are difficult to obtain when data are noisy or markers overlap in projection data. We propose an alternative mathematical approach for simultaneous marker localization and deformation estimation by extending a grid-free algorithm first proposed in the context of super-resolution single-molecule localization microscopy. Our approach does not require labelled marker locations; instead, we use an image-based loss where we compare the forward projection of markers with the observed data. We equip this marker localization scheme with an additional deformation estimation component and solve for a reduced number of deformation parameters. Using extensive numerical studies on marker-only samples, we show that our approach automatically finds markers and reliably estimates sample deformation without labelled marker data. We further demonstrate the applicability of our approach for a broad range of model mismatch scenarios, including experimental electron tomography data of gold markers on ice.</description><subject>Algorithms</subject><subject>conditional gradient method</subject><subject>Data models</subject><subject>Deformable models</subject><subject>Deformation</subject><subject>Gold</subject><subject>Image reconstruction</subject><subject>Image resolution</subject><subject>Localization</subject><subject>Location awareness</subject><subject>marker-based alignment</subject><subject>Markers</subject><subject>Mathematical models</subject><subject>Mathematical super-resolution</subject><subject>parallel-beam tomography</subject><subject>Parameters</subject><subject>Polynomials</subject><subject>Strain</subject><subject>Tomography</subject><issn>2573-0436</issn><issn>2333-9403</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9ULFOwzAUtBBIVKU7Eosl5hTHduKYLSptqVTEQJktJ31uU5I42OlQ-HlcpWK6e6e79_QOofuYTOOYyKfNbDWlhNIpiyUXsbxCI8oYiyQn7DrwRLCIcJbeoon3B0JIzCVlWTpCvx-ddh7yutq1zzjHS1dto4UDwHm9s67q9w021uH82NtG91WJ37T7AofXttR19RMk22LdbvELBF8zzHPfVxdatXjmTjaa11D2Lggb29id093-dIdujK49TC44Rp-L-Wb2Gq3fl6tZvo5KmrI-EtIQkwGVTMuCJBR0QFEAFJIkBc1MCVshM8O4pkkmkwRSblJDs5QJMBzYGD0Oeztnv4_ge3WwR9eGk4oKwonkkojgIoOrdNZ7B0Z1LjzhTiom6tyyCi2rc8vq0nKIPAyRCgD-7TLjnHLJ_gBYHHmi</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Ganguly, Poulami Somanya</creator><creator>Lucka, Felix</creator><creator>Kohr, Holger</creator><creator>Franken, Erik</creator><creator>Hupkes, Hermen Jan</creator><creator>Batenburg, Kees Joost</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1672-7194</orcidid><orcidid>https://orcid.org/0000-0003-0727-9561</orcidid><orcidid>https://orcid.org/0000-0003-1726-5323</orcidid><orcidid>https://orcid.org/0000-0002-8763-5177</orcidid></search><sort><creationdate>2022</creationdate><title>SparseAlign: A Grid-Free Algorithm for Automatic Marker Localization and Deformation Estimation in Cryo-Electron Tomography</title><author>Ganguly, Poulami Somanya ; Lucka, Felix ; Kohr, Holger ; Franken, Erik ; Hupkes, Hermen Jan ; Batenburg, Kees Joost</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-79f0f8e293a9b052eaa9b7beeb905b28fced798f34a258955e64f6f28637ef4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>conditional gradient method</topic><topic>Data models</topic><topic>Deformable models</topic><topic>Deformation</topic><topic>Gold</topic><topic>Image reconstruction</topic><topic>Image resolution</topic><topic>Localization</topic><topic>Location awareness</topic><topic>marker-based alignment</topic><topic>Markers</topic><topic>Mathematical models</topic><topic>Mathematical super-resolution</topic><topic>parallel-beam tomography</topic><topic>Parameters</topic><topic>Polynomials</topic><topic>Strain</topic><topic>Tomography</topic><toplevel>online_resources</toplevel><creatorcontrib>Ganguly, Poulami Somanya</creatorcontrib><creatorcontrib>Lucka, Felix</creatorcontrib><creatorcontrib>Kohr, Holger</creatorcontrib><creatorcontrib>Franken, Erik</creatorcontrib><creatorcontrib>Hupkes, Hermen Jan</creatorcontrib><creatorcontrib>Batenburg, Kees Joost</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on computational imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ganguly, Poulami Somanya</au><au>Lucka, Felix</au><au>Kohr, Holger</au><au>Franken, Erik</au><au>Hupkes, Hermen Jan</au><au>Batenburg, Kees Joost</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SparseAlign: A Grid-Free Algorithm for Automatic Marker Localization and Deformation Estimation in Cryo-Electron Tomography</atitle><jtitle>IEEE transactions on computational imaging</jtitle><stitle>TCI</stitle><date>2022</date><risdate>2022</risdate><volume>8</volume><spage>651</spage><epage>665</epage><pages>651-665</pages><issn>2573-0436</issn><eissn>2333-9403</eissn><coden>ITCIAJ</coden><abstract>Tilt-series alignment is crucial to obtaining high-resolution reconstructions in cryo-electron tomography. Beam-induced local deformation of the sample is hard to estimate from the low-contrast sample alone, and often requires fiducial gold bead markers. The state-of-the-art approach for deformation estimation uses (semi-)manually labelled marker locations in projection data to fit the parameters of a polynomial deformation model. Manually-labelled marker locations are difficult to obtain when data are noisy or markers overlap in projection data. We propose an alternative mathematical approach for simultaneous marker localization and deformation estimation by extending a grid-free algorithm first proposed in the context of super-resolution single-molecule localization microscopy. Our approach does not require labelled marker locations; instead, we use an image-based loss where we compare the forward projection of markers with the observed data. We equip this marker localization scheme with an additional deformation estimation component and solve for a reduced number of deformation parameters. Using extensive numerical studies on marker-only samples, we show that our approach automatically finds markers and reliably estimates sample deformation without labelled marker data. We further demonstrate the applicability of our approach for a broad range of model mismatch scenarios, including experimental electron tomography data of gold markers on ice.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TCI.2022.3194719</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-1672-7194</orcidid><orcidid>https://orcid.org/0000-0003-0727-9561</orcidid><orcidid>https://orcid.org/0000-0003-1726-5323</orcidid><orcidid>https://orcid.org/0000-0002-8763-5177</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2573-0436
ispartof IEEE transactions on computational imaging, 2022, Vol.8, p.651-665
issn 2573-0436
2333-9403
language eng
recordid cdi_proquest_journals_2704094907
source IEEE Electronic Library (IEL)
subjects Algorithms
conditional gradient method
Data models
Deformable models
Deformation
Gold
Image reconstruction
Image resolution
Localization
Location awareness
marker-based alignment
Markers
Mathematical models
Mathematical super-resolution
parallel-beam tomography
Parameters
Polynomials
Strain
Tomography
title SparseAlign: A Grid-Free Algorithm for Automatic Marker Localization and Deformation Estimation in Cryo-Electron Tomography
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T11%3A19%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SparseAlign:%20A%20Grid-Free%20Algorithm%20for%20Automatic%20Marker%20Localization%20and%20Deformation%20Estimation%20in%20Cryo-Electron%20Tomography&rft.jtitle=IEEE%20transactions%20on%20computational%20imaging&rft.au=Ganguly,%20Poulami%20Somanya&rft.date=2022&rft.volume=8&rft.spage=651&rft.epage=665&rft.pages=651-665&rft.issn=2573-0436&rft.eissn=2333-9403&rft.coden=ITCIAJ&rft_id=info:doi/10.1109/TCI.2022.3194719&rft_dat=%3Cproquest_RIE%3E2704094907%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2704094907&rft_id=info:pmid/&rft_ieee_id=9844249&rfr_iscdi=true