Analytical solutions for rheological processes around bores and tunnels
Five analytical solutions are presented for processes of linear viscoelastic, homogeneous, and isotropic solids around freshly opened bores / tunnels in various initial stress fields. The solutions are obtained via a simple and direct realization of Volterra’s principle. This realization is based on...
Gespeichert in:
Veröffentlicht in: | Journal of engineering mathematics 2022-10, Vol.136 (1), Article 1 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Journal of engineering mathematics |
container_volume | 136 |
creator | Fülöp, Tamás Szücs, Mátyás |
description | Five analytical solutions are presented for processes of linear viscoelastic, homogeneous, and isotropic solids around freshly opened bores / tunnels in various initial stress fields. The solutions are obtained via a simple and direct realization of Volterra’s principle. This realization is based on an appropriate decomposition of the known solution of the corresponding elastic problem and leads to ordinary differential equations in the time variable in the viscoelastic case. Fairly rich temporal behaviors are revealed. |
doi_str_mv | 10.1007/s10665-022-10235-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2704018116</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2704018116</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-6949a245a7a462076eca4134af4a39934dcd790cceb8c75fc0f68aab0363d3513</originalsourceid><addsrcrecordid>eNp9UD1PwzAQtRBIlMIfYIrEbDh_xI7HqoIWqRILzJbrOKVViIsvGfrvcRokNqa70_vQvUfIPYNHBqCfkIFSJQXOKQMuSqouyIyVWlCuQVySGYwQVEJckxvEAwCYSvIZWS061576vXdtgbEd-n3ssGhiKtJniG3cnZFjij4gBixcikNXF9uYxiNv_dB1ocVbctW4FsPd75yTj5fn9-Wabt5Wr8vFhnpuRE-VkcZxWTrtpOKgVfBOMiFdI50wRsja19qA92FbeV02HhpVObcFoUQtSibm5GHyzS99DwF7e4hDyhnQ5qQSWMWYyiw-sXyKiCk09pj2Xy6dLAM7FmanwmxuxZ4Ls6NITCLM5G4X0p_1P6ofGGduMA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2704018116</pqid></control><display><type>article</type><title>Analytical solutions for rheological processes around bores and tunnels</title><source>SpringerLink Journals - AutoHoldings</source><creator>Fülöp, Tamás ; Szücs, Mátyás</creator><creatorcontrib>Fülöp, Tamás ; Szücs, Mátyás</creatorcontrib><description>Five analytical solutions are presented for processes of linear viscoelastic, homogeneous, and isotropic solids around freshly opened bores / tunnels in various initial stress fields. The solutions are obtained via a simple and direct realization of Volterra’s principle. This realization is based on an appropriate decomposition of the known solution of the corresponding elastic problem and leads to ordinary differential equations in the time variable in the viscoelastic case. Fairly rich temporal behaviors are revealed.</description><identifier>ISSN: 0022-0833</identifier><identifier>EISSN: 1573-2703</identifier><identifier>DOI: 10.1007/s10665-022-10235-6</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Applications of Mathematics ; Computational Mathematics and Numerical Analysis ; Differential equations ; Exact solutions ; Initial stresses ; Mathematical analysis ; Mathematical and Computational Engineering ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Rheological properties ; Stress distribution ; Theoretical and Applied Mechanics ; Tunnels ; Viscoelasticity</subject><ispartof>Journal of engineering mathematics, 2022-10, Vol.136 (1), Article 1</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-6949a245a7a462076eca4134af4a39934dcd790cceb8c75fc0f68aab0363d3513</citedby><cites>FETCH-LOGICAL-c293t-6949a245a7a462076eca4134af4a39934dcd790cceb8c75fc0f68aab0363d3513</cites><orcidid>0000-0003-2708-7065</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10665-022-10235-6$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10665-022-10235-6$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Fülöp, Tamás</creatorcontrib><creatorcontrib>Szücs, Mátyás</creatorcontrib><title>Analytical solutions for rheological processes around bores and tunnels</title><title>Journal of engineering mathematics</title><addtitle>J Eng Math</addtitle><description>Five analytical solutions are presented for processes of linear viscoelastic, homogeneous, and isotropic solids around freshly opened bores / tunnels in various initial stress fields. The solutions are obtained via a simple and direct realization of Volterra’s principle. This realization is based on an appropriate decomposition of the known solution of the corresponding elastic problem and leads to ordinary differential equations in the time variable in the viscoelastic case. Fairly rich temporal behaviors are revealed.</description><subject>Applications of Mathematics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Differential equations</subject><subject>Exact solutions</subject><subject>Initial stresses</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Rheological properties</subject><subject>Stress distribution</subject><subject>Theoretical and Applied Mechanics</subject><subject>Tunnels</subject><subject>Viscoelasticity</subject><issn>0022-0833</issn><issn>1573-2703</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9UD1PwzAQtRBIlMIfYIrEbDh_xI7HqoIWqRILzJbrOKVViIsvGfrvcRokNqa70_vQvUfIPYNHBqCfkIFSJQXOKQMuSqouyIyVWlCuQVySGYwQVEJckxvEAwCYSvIZWS061576vXdtgbEd-n3ssGhiKtJniG3cnZFjij4gBixcikNXF9uYxiNv_dB1ocVbctW4FsPd75yTj5fn9-Wabt5Wr8vFhnpuRE-VkcZxWTrtpOKgVfBOMiFdI50wRsja19qA92FbeV02HhpVObcFoUQtSibm5GHyzS99DwF7e4hDyhnQ5qQSWMWYyiw-sXyKiCk09pj2Xy6dLAM7FmanwmxuxZ4Ls6NITCLM5G4X0p_1P6ofGGduMA</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Fülöp, Tamás</creator><creator>Szücs, Mátyás</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2708-7065</orcidid></search><sort><creationdate>20221001</creationdate><title>Analytical solutions for rheological processes around bores and tunnels</title><author>Fülöp, Tamás ; Szücs, Mátyás</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-6949a245a7a462076eca4134af4a39934dcd790cceb8c75fc0f68aab0363d3513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applications of Mathematics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Differential equations</topic><topic>Exact solutions</topic><topic>Initial stresses</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Rheological properties</topic><topic>Stress distribution</topic><topic>Theoretical and Applied Mechanics</topic><topic>Tunnels</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fülöp, Tamás</creatorcontrib><creatorcontrib>Szücs, Mátyás</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>CrossRef</collection><jtitle>Journal of engineering mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fülöp, Tamás</au><au>Szücs, Mátyás</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytical solutions for rheological processes around bores and tunnels</atitle><jtitle>Journal of engineering mathematics</jtitle><stitle>J Eng Math</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>136</volume><issue>1</issue><artnum>1</artnum><issn>0022-0833</issn><eissn>1573-2703</eissn><abstract>Five analytical solutions are presented for processes of linear viscoelastic, homogeneous, and isotropic solids around freshly opened bores / tunnels in various initial stress fields. The solutions are obtained via a simple and direct realization of Volterra’s principle. This realization is based on an appropriate decomposition of the known solution of the corresponding elastic problem and leads to ordinary differential equations in the time variable in the viscoelastic case. Fairly rich temporal behaviors are revealed.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10665-022-10235-6</doi><orcidid>https://orcid.org/0000-0003-2708-7065</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-0833 |
ispartof | Journal of engineering mathematics, 2022-10, Vol.136 (1), Article 1 |
issn | 0022-0833 1573-2703 |
language | eng |
recordid | cdi_proquest_journals_2704018116 |
source | SpringerLink Journals - AutoHoldings |
subjects | Applications of Mathematics Computational Mathematics and Numerical Analysis Differential equations Exact solutions Initial stresses Mathematical analysis Mathematical and Computational Engineering Mathematical Modeling and Industrial Mathematics Mathematics Mathematics and Statistics Rheological properties Stress distribution Theoretical and Applied Mechanics Tunnels Viscoelasticity |
title | Analytical solutions for rheological processes around bores and tunnels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T06%3A59%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytical%20solutions%20for%20rheological%20processes%20around%20bores%20and%20tunnels&rft.jtitle=Journal%20of%20engineering%20mathematics&rft.au=F%C3%BCl%C3%B6p,%20Tam%C3%A1s&rft.date=2022-10-01&rft.volume=136&rft.issue=1&rft.artnum=1&rft.issn=0022-0833&rft.eissn=1573-2703&rft_id=info:doi/10.1007/s10665-022-10235-6&rft_dat=%3Cproquest_cross%3E2704018116%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2704018116&rft_id=info:pmid/&rfr_iscdi=true |