Analytical solutions for rheological processes around bores and tunnels

Five analytical solutions are presented for processes of linear viscoelastic, homogeneous, and isotropic solids around freshly opened bores / tunnels in various initial stress fields. The solutions are obtained via a simple and direct realization of Volterra’s principle. This realization is based on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of engineering mathematics 2022-10, Vol.136 (1), Article 1
Hauptverfasser: Fülöp, Tamás, Szücs, Mátyás
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Journal of engineering mathematics
container_volume 136
creator Fülöp, Tamás
Szücs, Mátyás
description Five analytical solutions are presented for processes of linear viscoelastic, homogeneous, and isotropic solids around freshly opened bores / tunnels in various initial stress fields. The solutions are obtained via a simple and direct realization of Volterra’s principle. This realization is based on an appropriate decomposition of the known solution of the corresponding elastic problem and leads to ordinary differential equations in the time variable in the viscoelastic case. Fairly rich temporal behaviors are revealed.
doi_str_mv 10.1007/s10665-022-10235-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2704018116</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2704018116</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-6949a245a7a462076eca4134af4a39934dcd790cceb8c75fc0f68aab0363d3513</originalsourceid><addsrcrecordid>eNp9UD1PwzAQtRBIlMIfYIrEbDh_xI7HqoIWqRILzJbrOKVViIsvGfrvcRokNqa70_vQvUfIPYNHBqCfkIFSJQXOKQMuSqouyIyVWlCuQVySGYwQVEJckxvEAwCYSvIZWS061576vXdtgbEd-n3ssGhiKtJniG3cnZFjij4gBixcikNXF9uYxiNv_dB1ocVbctW4FsPd75yTj5fn9-Wabt5Wr8vFhnpuRE-VkcZxWTrtpOKgVfBOMiFdI50wRsja19qA92FbeV02HhpVObcFoUQtSibm5GHyzS99DwF7e4hDyhnQ5qQSWMWYyiw-sXyKiCk09pj2Xy6dLAM7FmanwmxuxZ4Ls6NITCLM5G4X0p_1P6ofGGduMA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2704018116</pqid></control><display><type>article</type><title>Analytical solutions for rheological processes around bores and tunnels</title><source>SpringerLink Journals - AutoHoldings</source><creator>Fülöp, Tamás ; Szücs, Mátyás</creator><creatorcontrib>Fülöp, Tamás ; Szücs, Mátyás</creatorcontrib><description>Five analytical solutions are presented for processes of linear viscoelastic, homogeneous, and isotropic solids around freshly opened bores / tunnels in various initial stress fields. The solutions are obtained via a simple and direct realization of Volterra’s principle. This realization is based on an appropriate decomposition of the known solution of the corresponding elastic problem and leads to ordinary differential equations in the time variable in the viscoelastic case. Fairly rich temporal behaviors are revealed.</description><identifier>ISSN: 0022-0833</identifier><identifier>EISSN: 1573-2703</identifier><identifier>DOI: 10.1007/s10665-022-10235-6</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Applications of Mathematics ; Computational Mathematics and Numerical Analysis ; Differential equations ; Exact solutions ; Initial stresses ; Mathematical analysis ; Mathematical and Computational Engineering ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Rheological properties ; Stress distribution ; Theoretical and Applied Mechanics ; Tunnels ; Viscoelasticity</subject><ispartof>Journal of engineering mathematics, 2022-10, Vol.136 (1), Article 1</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-6949a245a7a462076eca4134af4a39934dcd790cceb8c75fc0f68aab0363d3513</citedby><cites>FETCH-LOGICAL-c293t-6949a245a7a462076eca4134af4a39934dcd790cceb8c75fc0f68aab0363d3513</cites><orcidid>0000-0003-2708-7065</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10665-022-10235-6$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10665-022-10235-6$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Fülöp, Tamás</creatorcontrib><creatorcontrib>Szücs, Mátyás</creatorcontrib><title>Analytical solutions for rheological processes around bores and tunnels</title><title>Journal of engineering mathematics</title><addtitle>J Eng Math</addtitle><description>Five analytical solutions are presented for processes of linear viscoelastic, homogeneous, and isotropic solids around freshly opened bores / tunnels in various initial stress fields. The solutions are obtained via a simple and direct realization of Volterra’s principle. This realization is based on an appropriate decomposition of the known solution of the corresponding elastic problem and leads to ordinary differential equations in the time variable in the viscoelastic case. Fairly rich temporal behaviors are revealed.</description><subject>Applications of Mathematics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Differential equations</subject><subject>Exact solutions</subject><subject>Initial stresses</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Rheological properties</subject><subject>Stress distribution</subject><subject>Theoretical and Applied Mechanics</subject><subject>Tunnels</subject><subject>Viscoelasticity</subject><issn>0022-0833</issn><issn>1573-2703</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9UD1PwzAQtRBIlMIfYIrEbDh_xI7HqoIWqRILzJbrOKVViIsvGfrvcRokNqa70_vQvUfIPYNHBqCfkIFSJQXOKQMuSqouyIyVWlCuQVySGYwQVEJckxvEAwCYSvIZWS061576vXdtgbEd-n3ssGhiKtJniG3cnZFjij4gBixcikNXF9uYxiNv_dB1ocVbctW4FsPd75yTj5fn9-Wabt5Wr8vFhnpuRE-VkcZxWTrtpOKgVfBOMiFdI50wRsja19qA92FbeV02HhpVObcFoUQtSibm5GHyzS99DwF7e4hDyhnQ5qQSWMWYyiw-sXyKiCk09pj2Xy6dLAM7FmanwmxuxZ4Ls6NITCLM5G4X0p_1P6ofGGduMA</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Fülöp, Tamás</creator><creator>Szücs, Mátyás</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2708-7065</orcidid></search><sort><creationdate>20221001</creationdate><title>Analytical solutions for rheological processes around bores and tunnels</title><author>Fülöp, Tamás ; Szücs, Mátyás</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-6949a245a7a462076eca4134af4a39934dcd790cceb8c75fc0f68aab0363d3513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applications of Mathematics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Differential equations</topic><topic>Exact solutions</topic><topic>Initial stresses</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Rheological properties</topic><topic>Stress distribution</topic><topic>Theoretical and Applied Mechanics</topic><topic>Tunnels</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fülöp, Tamás</creatorcontrib><creatorcontrib>Szücs, Mátyás</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>CrossRef</collection><jtitle>Journal of engineering mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fülöp, Tamás</au><au>Szücs, Mátyás</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytical solutions for rheological processes around bores and tunnels</atitle><jtitle>Journal of engineering mathematics</jtitle><stitle>J Eng Math</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>136</volume><issue>1</issue><artnum>1</artnum><issn>0022-0833</issn><eissn>1573-2703</eissn><abstract>Five analytical solutions are presented for processes of linear viscoelastic, homogeneous, and isotropic solids around freshly opened bores / tunnels in various initial stress fields. The solutions are obtained via a simple and direct realization of Volterra’s principle. This realization is based on an appropriate decomposition of the known solution of the corresponding elastic problem and leads to ordinary differential equations in the time variable in the viscoelastic case. Fairly rich temporal behaviors are revealed.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10665-022-10235-6</doi><orcidid>https://orcid.org/0000-0003-2708-7065</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-0833
ispartof Journal of engineering mathematics, 2022-10, Vol.136 (1), Article 1
issn 0022-0833
1573-2703
language eng
recordid cdi_proquest_journals_2704018116
source SpringerLink Journals - AutoHoldings
subjects Applications of Mathematics
Computational Mathematics and Numerical Analysis
Differential equations
Exact solutions
Initial stresses
Mathematical analysis
Mathematical and Computational Engineering
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Rheological properties
Stress distribution
Theoretical and Applied Mechanics
Tunnels
Viscoelasticity
title Analytical solutions for rheological processes around bores and tunnels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T06%3A59%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytical%20solutions%20for%20rheological%20processes%20around%20bores%20and%20tunnels&rft.jtitle=Journal%20of%20engineering%20mathematics&rft.au=F%C3%BCl%C3%B6p,%20Tam%C3%A1s&rft.date=2022-10-01&rft.volume=136&rft.issue=1&rft.artnum=1&rft.issn=0022-0833&rft.eissn=1573-2703&rft_id=info:doi/10.1007/s10665-022-10235-6&rft_dat=%3Cproquest_cross%3E2704018116%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2704018116&rft_id=info:pmid/&rfr_iscdi=true